Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-26T18:16:19.718Z Has data issue: false hasContentIssue false

A variation formula for the topological entropy of convex-cocompact manifolds

Published online by Cambridge University Press:  25 November 2010

SAMUEL TAPIE*
Affiliation:
Laboratoire Jean Leray, Université de Nantes, 2 rue de la Houssinière - BP 92208, F-44322 Nantes Cedex 3, France (email: samuel.tapie@univ-nantes.fr)

Abstract

Let (M,gλ) be a 𝒞2-family of complete convex-cocompact metrics with pinched negative sectional curvatures on a fixed manifold. We show that the topological entropy htop(gλ) of the geodesic flow is a 𝒞1 function of λ and we give an explicit formula for its derivative. We apply this to show that if ρλ(Γ)⊂PSL2(ℂ) is an analytic family of convex-cocompact faithful representations of a Kleinian group Γ, then the Hausdorff dimension of the limit set Λρλ(Γ) is a 𝒞1 function of λ. Finally, we give a variation formula for Λρλ (Γ).

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[AR97]Anderson, J. W. and Rocha, A. C.. Analyticity of Hausdorff dimension of limit sets of Kleinian groups. Ann. Acad. Sci. Fenn. Math. 22(2) (1997), 349364.Google Scholar
[BCG95]Besson, G., Courtois, G. and Gallot, S.. Entropies et rigidités des espaces localement symétriques de courbure strictement négative. Geom. Funct. Anal. 5(5) (1995), 731799.CrossRefGoogle Scholar
[Bow72]Bowen, R.. Periodic orbits for hyperbolic flows. Amer. J. Math. 94 (1972), 130.CrossRefGoogle Scholar
[Bow74]Bowen, R.. Maximizing entropy for a hyperbolic flow. Math. Syst. Theory 7(4) (1974), 300303.CrossRefGoogle Scholar
[Bow95]Bowditch, B. H.. Geometrical finiteness with variable negative curvature. Duke Math. J. 77(1) (1995), 229274.CrossRefGoogle Scholar
[BR75]Bowen, R. and Ruelle, D.. The ergodic theory of Axiom A flows. Invent. Math. 29(3) (1975), 181202.CrossRefGoogle Scholar
[DE86]Douady, A. and Earle, C. J.. Conformally natural extension of homeomorphisms of the circle. Acta Math. 157(1–2) (1986), 2348.CrossRefGoogle Scholar
[Ebe72]Eberlein, P.. Geodesic flows on negatively curved manifolds. I. Ann. of Math. (2) 95 (1972), 492510.CrossRefGoogle Scholar
[Fla95]Flaminio, L.. Local entropy rigidity for hyperbolic manifolds. Comm. Anal. Geom. 4(3) (1995), 492510.Google Scholar
[Kat82]Katok, A.. Entropy and closed geodesics. Ergod. Th. & Dynam. Sys. 2(3–4) (1982), 39365.CrossRefGoogle Scholar
[KH95]Katok, A. and Hasselblatt, B.. Introduction to the Modern Theory of Dynamical Systems, with a supplementary chapter by Katok and Leonardo Mendoza (Encyclopedia of Mathematics and its Applications, 54). Cambridge University Press, Cambridge, 1995.CrossRefGoogle Scholar
[KKPW89]Katok, A., Knieper, G., Pollicott, M. and Weiss, H.. Differentiability and analyticity of topological entropy for Anosov and geodesic flows. Invent. Math. 98(3) (1989), 581597.CrossRefGoogle Scholar
[KKW91]Katok, A., Knieper, G. and Weiss, H.. Formulas for the derivative and critical points of topological entropy for Anosov and geodesic flows. Comm. Math. Phys. 138(1) (1991), 1931.CrossRefGoogle Scholar
[Kra72]Kra, I.. On spaces of Kleinian groups. Comment. Math. Helv. 47 (1972), 5369.CrossRefGoogle Scholar
[Man79]Manning, A.. Topological entropy for geodesic flows. Ann. of Math. (2) 110(3) (1979), 567573.CrossRefGoogle Scholar
[Man04]Manning, A.. The volume entropy of a surface decreases along the Ricci flow. Ergod. Th. & Dynam. Sys. 24(1) (2004), 171176.CrossRefGoogle Scholar
[Mar70]Margulis, G. A.. Certain measures that are connected with U-flows on compact manifolds. Funktsional. Anal. i Prilozhen. 4(1) (1970), 6276.CrossRefGoogle Scholar
[Mar07]Marden, A.. An introduction to hyperbolic 3-manifolds. Outer Circles. Cambridge University Press, Cambridge, 2007.CrossRefGoogle Scholar
[Mau02]Maucourant, F.. Approximation diophantienne, dynamique des chambres de Weyl et répartition d’orbites de réseaux. PhD Thesis, Université Lille I, 2002,http://tel.archives-ouvertes.fr/tel-00158036.Google Scholar
[McM99]McMullen, C.. Hausdorff dimension and conformal dynamics. I. Strong convergence of Kleinian groups. J. Differential Geom. 51(3) (1999), 471515.CrossRefGoogle Scholar
[OP04]Otal, J.-P. and Peigné, M.. Principe variationnel et groupes Kleiniens. Duke Math. J. 125(1) (2004), 1544.CrossRefGoogle Scholar
[Rue82]Ruelle, D.. Repellers for real analytic maps. Ergod. Th. & Dynam. Sys. 2(1) (1982), 99107.CrossRefGoogle Scholar
[SST]Suarez-Serrato, P. and Tapie, S.. Yamabe Flow and minimal entropy on complete manifolds, in preparation.Google Scholar
[Sul79]Sullivan, D.. The density at infinity of a discrete group of hyperbolic motions. Publ. Math. Inst. Hautes Études Sci. (50) (1979), 171202.CrossRefGoogle Scholar
[Sul84]Sullivan, D.. Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups. Acta Math. 153(3–4) (1984), 259277.CrossRefGoogle Scholar
[Tho09]Thompson, D. J.. A criterion for topological entropy to decrease under normalised Ricci flow. Preprint, 2009, arXiv: 0911.3178.Google Scholar
[Yue96]Yue, C.. The ergodic theory of discrete isometry groups on manifolds of variable negative curvature. Trans. Amer. Math. Soc. 348(12) (1996), 49655005.CrossRefGoogle Scholar