Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-26T06:20:17.797Z Has data issue: false hasContentIssue false

The zero angular momentum, three-body problem: All but one solution has syzygies

Published online by Cambridge University Press:  01 December 2007

RICHARD MONTGOMERY*
Affiliation:
Mathematics Department, UC Santa Cruz, Santa Cruz, CA, 95064, USA (email: rmont@math.ucsc.edu)

Abstract

A syzygy in the three-body problem is a collinear instant. We prove that, with the exception of Lagrange’s solution, every solution to the zero angular momentum, Newtonian three-body problem suffers syzygies. The proof works for all mass ratios.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Fujiwara, T., Fukuda, H., Kameyama, A., Ozaki, H. and Yamada, M.. Synchronised similar triangles. J. Phys. A: Math. Gen. 37 (2004), 1057110584.CrossRefGoogle Scholar
[2]Lagrange, J.-L.. Essai sur le Probléme des Trois Corps (œuvres, 6), tome IX. Prix de l’Académie Royale des Sciences de Paris, 1772, p. 292.Google Scholar
[3]Levi-Civita, T.. Sur la régularisation du problème des trois corps. Acta Math. 42 (1921), 99144.CrossRefGoogle Scholar
[4]Marchal, C.. The Three-Body Problem. Elsevier, Amsterdam, 1990.Google Scholar
[5]Chenciner, A. and Montgomery, R.. A remarkable periodic solution of the three-body problem in the case of equal masses. Ann. of Math. 152 (2000), 881901.CrossRefGoogle Scholar
[6]Moeckel, R.. Chaotic dynamics near triple collision. Arch. Ration. Mech. 107(1) (1989), 3769.CrossRefGoogle Scholar
[7]Montgomery, R.. Infinitely many syzygies. Arch. Ration. Mech. Anal. 164 (2002), 311340.CrossRefGoogle Scholar
[8]Montgomery, R.. Fitting hyperbolic pants to a three-body problem. Ergod. Th. & Dynam. Sys. 25(3) (2005), 921947.CrossRefGoogle Scholar
[9]Montgomery, R.. The N-body problem, the braid group, and action-minimizing periodic orbits. Nonlinearity 11(2) (1998), 363376.CrossRefGoogle Scholar
[10]Sitnikov, K. A.. The existence of oscillatory motions in the three-body problem. Sov. Phys. Dokl. 5 (1961), 647650.Google Scholar
[11]Saari, D.. Collisions, Rings, and Other Newtonian N-Body Problems (CBMS Regional Conference Series in Mathematics, 104). American Mathematical Society, Providence, RI, 2005.CrossRefGoogle Scholar
[12]Sundman, K.. Memoire sur le probleme des trois corps. Acta Math. 36 (1912), 105179.CrossRefGoogle Scholar