Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-10T19:34:36.542Z Has data issue: false hasContentIssue false

Boundary stabilization of Maxwell's equations with space-time variable coefficients

Published online by Cambridge University Press:  15 September 2003

Serge Nicaise
Affiliation:
Université de Valenciennes et du Hainaut Cambrésis MACS, Institut des Sciences et Techniques de Valenciennes, 59313 Valenciennes Cedex 9, France; s.nicaise@univ-valenciennes.fr.
Cristina Pignotti
Affiliation:
Dipartimento di Metodi e Modelli Matematici per le Scienze Applicate, Università di Roma “La Sapienza”, Via A. Scarpa 16, 00161 Roma, Italy; pignotti@dmmm.uniroma1.it.
Get access

Abstract

We consider the stabilization of Maxwell's equations with space-time variable coefficients in a bounded region with a smooth boundary by means of linear or nonlinear Silver–Müller boundary condition. This is based on some stability estimates that are obtained using the “standard" identity with multiplier and appropriate properties of the feedback. We deduce an explicit decay rate of the energy, for instance exponential, polynomial or logarithmic decays are available for appropriate feedbacks.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barucq, H. and Hanouzet, B., Étude asymptotique du système de Maxwell avec la condition aux limites absorbante de Silver-Müller II. C. R. Acad. Sci. Paris Sér. I Math. 316 (1993) 1019-1024.
Castro, C. and Zuazua, E., Localization of waves in 1-d highly heterogeneous media. Arch. Rational Mech. Anal. 164 (2002) 39-72. CrossRef
Crandall, M.G. and Pazy, A., Nonlinear evolution equations in Banach spaces. Israel J. Math. 11 (1972) 57-94. CrossRef
R. Dautray and J.L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology. Springer-Verlag, Vol. 3 (1990), Vol. 5 (1992).
Eller, M., Lagnese, J.E. and Nicaise, S., Decay rates for solutions of a Maxwell system with nonlinear boundary damping. Comp. Appl. Math. 21 (2002) 135-165.
Evans, L.C., Nonlinear evolution equations in an arbitrary Banach space. Israel J. Math. 26 (1977) 1-42. CrossRef
P. Grisvard, Elliptic problems in nonsmooth Domains. Pitman, Boston, Monogr. Stud. Math. 21 (1985).
Kato, T., Nonlinear semigroups and evolution equations. J. Math. Soc. Japan 19 (1967) 508-520. CrossRef
T. Kato, Linear and quasilinear equations of evolution of hyperbolic type, CIME, II Ciclo. Cortona (1976) 125-191.
T. Kato, Abstract differential equations and nonlinear mixed problems. Accademia Nazionale dei Lincei, Scuola Normale Superiore, Lezione Fermiane, Pisa (1985).
V. Komornik, Exact Controllability and Stabilization. The Multiplier Method. Masson-John Wiley, Collection RMA Paris 36 (1994).
Komornik, V., Boundary stabilization, observation and control of Maxwell's equations. Panamer. Math. J. 4 (1994) 47-61.
Lagnese, J.E., Exact controllability of Maxwell's equations in a general region. SIAM J. Control Optim. 27 (1989) 374-388. CrossRef
Lin, C.-Y., Time-dependent nonlinear evolution equations. Differential Integral Equations 15 (2002) 257-270.
Nicaise, S., Eller, M. and Lagnese, J.E., Stabilization of heterogeneous Maxwell's equations by nonlinear boundary feedbacks. EJDE 2002 (2002) 1-26.
Nicaise, S., Exact boundary controllability of Maxwell's equations in heteregeneous media and an application to an inverse source problem. SIAM J. Control Optim. 38 (2000) 1145-1170. CrossRef
Paquet, L., Problèmes mixtes pour le système de Maxwell. Ann. Fac. Sci. Toulouse Math. 4 (1982) 103-141. CrossRef
A. Pazy, Semigroups of linear operators and applications to partial differential equations. Springer-Verlag,, Appl. Math. Sci. 44 (1983).
Phung, K.D., Contrôle et stabilisation d'ondes électromagnétiques. ESAIM: COCV 5 (2000) 87-137. CrossRef
Pignotti, C., Observability and controllability of Maxwell's equations. Rend. Mat. Appl. 19 (1999) 523-546.