Article contents
Local controllability of a 1-D tank containing a fluid modeledby the shallow water equations
Published online by Cambridge University Press: 15 August 2002
Abstract
We consider a 1-D tank containing an inviscid incompressible irrotational fluid. The tank is subject to the control which consists of horizontal moves. We assume that the motion of the fluid is well-described by the Saint–Venant equations (also called the shallow water equations). We prove the local controllability of this nonlinear control system around any steady state. As a corollary we get that one can move from any steady state to any other steady state.
- Type
- Research Article
- Information
- ESAIM: Control, Optimisation and Calculus of Variations , Volume 8: A tribute to JL Lions , 2002 , pp. 513 - 554
- Copyright
- © EDP Sciences, SMAI, 2002
References
Coron, J.-M., Global asymptotic stabilization for controllable systems without drift.
Math. Control Signals Systems
5 (1992) 295-312.
CrossRef
Coron, J.-M., Contrôlabilité exacte frontière de l'équation d'Euler des fluides parfaits incompressibles bidimensionnels.
C. R. Acad. Sci. Paris
317 (1993) 271-276.
Coron, J.-M., On the controllability of 2-D incompressible perfect fluids.
J. Math. Pures Appl.
75 (1996) 155-188.
Coron, J.-M., On the controllability of the 2-D incompressible Navier-Stokes equations with the Navier slip boundary conditions.
ESAIM: COCV
1 (1996) 35-75.
CrossRef
Coron, J.-M. and Fursikov, A., Global exact controllability of the 2D Navier-Stokes equations on a manifold without boundary.
Russian J. Math. Phys.
4 (1996) 429-448.
R. Courant and D. Hilbert, Methods of mathematical physics, II. Interscience publishers, John Wiley & Sons, New York London Sydney (1962).
L. Debnath, Nonlinear water waves. Academic Press, San Diego (1994).
F. Dubois, N. Petit and P. Rouchon, Motion planning and nonlinear simulations for a tank containing a fluid, ECC 99.
Fursikov, A.V. and Imanuvilov, O.Yu., Exact controllability of the Navier-Stokes and Boussinesq equations.
Russian Math. Surveys
. 54 (1999) 565-618.
CrossRef
Glass, O., Contrôlabilité exacte frontière de l'équation d'Euler des fluides parfaits incompressibles en dimension 3.
C. R. Acad. Sci. Paris Sér. I
325 (1997) 987-992.
CrossRef
Glass, O., Exact boundary controllability of 3-D Euler equation.
ESAIM: COCV
5 (2000) 1-44.
CrossRef
L. Hörmander, Lectures on nonlinear hyperbolic differential equations. Springer-Verlag, Berlin Heidelberg, Math. Appl.
26 (1997).
J.-L. Lions, Are there connections between turbulence and controllability?, in 9th INRIA International Conference. Antibes (1990).
Lions, J.-L., Exact controllability for distributed systems. Some trends and some problems, in Applied and industrial mathematics, Proc. Symp., Venice/Italy 1989. D. Reidel Publ. Co.
Math. Appl.
56 (1991) 59-84.
J.-L. Lions, On the controllability of distributed systems. Proc. Natl. Acad. Sci. USA
94 (1997) 4828-4835.
Lions, J.-L. and Zuazua, E., Approximate controllability of a hydro-elastic coupled system.
ESAIM: COCV
1 (1995) 1-15.
J.-L. Lions and E. Zuazua, Exact boundary controllability of Galerkin's approximations of Navier-Stokes equations. Ann. Sc. Norm. Super. Pisa Cl. Sci. IV 26 (1998) 605-621.
Li Ta Tsien and Yu Wen-Ci, Boundary value problems for quasilinear hyperbolic systems. Duke university, Durham, Math. Ser.
V (1985).
A. Majda, Compressible fluid flow and systems of conservation laws in several space variables. Sringer-Verlag, New York Berlin Heidelberg Tokyo, Appl. Math. Sci.
53 (1984).
N. Petit and P. Rouchon, Dynamics and solutions to some control problems for water-tank systems. Preprint, CIT-CDS 00-004.
de Saint-Venant, A.J.C.B., Théorie du mouvement non permanent des eaux, avec applications aux crues des rivières et à l'introduction des marées dans leur lit.
C. R. Acad. Sci. Paris
53 (1871) 147-154.
D. Serre, Systèmes de lois de conservations, I et II. Diderot Éditeur, Arts et Sciences, Paris, New York, Amsterdam (1996).
Sontag, E.D., Control of systems without drift via generic loops.
IEEE Trans. Automat. Control
. 40 (1995) 1210-1219.
CrossRef
- 59
- Cited by