Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T14:31:57.300Z Has data issue: false hasContentIssue false

Null-controllability of one-dimensionalparabolic equations

Published online by Cambridge University Press:  20 March 2008

Giovanni Alessandrini
Affiliation:
Dipartimento di Matematica e Informatica Università degli Studi di Trieste Via Valerio, 12/b 34127 Trieste, Italy; alessang@univ.trieste.it
Luis Escauriaza
Affiliation:
Universidad del País Vasco / Euskal Herriko Unibertsitatea Dpto. de Matemáticas Apto. 644, 48080 Bilbao, Spain; luis.escauriaza@ehu.es
Get access

Abstract

We prove the interior null-controllability of one-dimensionalparabolic equations with time independent measurable coefficients.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahlfors, L. and Bers, L., Riemann's mapping theorem for variable metrics. Ann. Math 72 (1960) 265296. CrossRef
Alessandrini, G. and Magnanini, R., Elliptic equations in divergence form, geometric critical oints of solutions and Stekloff eigenfunctions. SIAM J. Math. Anal 25 (1994) 12591268. CrossRef
Alessandrini, G. and Rondi, L., Stable determination of a crack in a planar inhomogeneous conductor. SIAM J. Math. Anal 30 (1998) 326340. CrossRef
L. Bers and L. Nirenberg, On a representation theorem for linear elliptic systems with discontinuous coefficients and applications, in Convegno Internazionale sulle Equazioni alle Derivate Parziali, Cremonese, Roma (1955) 111–138.
L. Bers, F. John and M. Schechter, Partial Differential Equations. Interscience, New York (1964).
T. Carleman, Les Fonctions Quasi Analytiques. Gauthier-Villars, Paris (1926).
Castro, C. and Zuazua, E., Concentration and lack of observability of waves in highly heterogeneous media. Arch. Rat. Mech. Anal 164 (2002) 3972. CrossRef
E. Fernandez-Cara and E. Zuazua, On the null controllability of the one-dimensional heat equation with BV coefficients Comput. Appl. Math. 21 (2002) 167–190.
A.V. Fursikov and O. Yu. Imanuvilov, Controllability of evolution equations Lecture Notes Series 34, Research Institute of Mathematics, Global Analysis Research Center, Seoul National University (1996).
D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd edn., Springer-Verlag, Berlin-Heildeberg-New York-Tokyo (1983).
O.Yu. Imanuvilov and M. Yamamoto, Carleman estimate for a parabolic equation in Sobolev spaces of negative order and its applications, in Control of Nonlinear Distributed Parameter Systems, G. Chen et al. Eds., Marcel-Dekker (2000) 113–137.
E.M. Landis and O.A. Oleinik, Generalized analyticity and some related properties of solutions of elliptic and parabolic equations Russian Math. Surv. 29 (1974) 195–212.
G. Lebeau and L. Robbiano, Contrôle exact de l'équation de la chaleur Commun. Partial Differ. Equ. 20 (1995) 335–356.
G. Lebeau and E. Zuazua, Null controllability of a system of linear thermoelasticity Arch. Rat. Mech. Anal. 141 (1998) 297–329.
F.H. Lin, A uniqueness theorem for parabolic equations Comm. Pure Appl. Math 42 (1988) 125–136.
A. López and E. Zuazua, Uniform null-controllability for the one-dimensional heat equation with rapidly oscillating periodic density Ann. I.H.P. - Analyse non linéaire 19 (2002) 543–580.
A.I. Markushevich, Theory of Functions of a Complex Variable Prentice Hall, Englewood Cliffs, NJ (1965).
D.L. Russel, A unified boundary controllability theory for hyperbolic and parabolic partial differential equations Stud. Appl. Math. 52 (1973) 189–221.
M. Tsuji, Potential Theory in Modern Function Theory Maruzen, Tokyo (1959).
I.N. Vekua, Generalized Analytic Functions Pergamon, Oxford (1962).