Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-10T15:42:40.414Z Has data issue: false hasContentIssue false

An example in the gradient theory of phase transitions

Published online by Cambridge University Press:  15 September 2002

Camillo De Lellis*
Affiliation:
Scuola Normale Superiore, P.zza dei Cavalieri 7, 56100 Pisa, Italy; delellis@cibs.sns.it.
Get access

Abstract

We prove by giving an example that when n ≥ 3 the asymptotic behavior of functionals $\int_\Omega \varepsilon|\nabla^2 u|^2+(1-|\nabla u|^2)^2/\varepsilon$ is quite different with respect to the planar case. In particular we show that the one-dimensional ansatz due to Aviles and Giga in the planar case (see [2]) is no longer true in higher dimensions.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ambrosio, L., De Lellis, C. and Mantegazza, C., Line energies for gradient vector fields in the plane. Calc. Var. Partial Differential Equations 9 (1999) 327-355. CrossRef
Aviles, P. and Giga, Y., A mathematical problem related to the physical theory of liquid crystal configurations. Proc. Centre Math. Anal. Austral. Nat. Univ. 12 (1987) 1-16.
Aviles, P. and Giga, Y., On lower semicontinuity of a defect energy obtained by a singular limit of the Ginzburg-Landau type energy for gradient fields. Proc. Roy. Soc. Edinburgh Sect. A 129 (1999) 1-17. CrossRef
C. De Lellis, Energie di linea per campi di gradienti, Ba. D. Thesis. University of Pisa (1999).
De Simone, A., Kohn, R.W., Müller, S. and Otto, F., A compactness result in the gradient theory of phase transition. Proc. Roy. Soc. Edinburgh Sect. A 131 (2001) 833-844. CrossRef
Jabin, P.-E. and Perthame, B., Compactness in Ginzburg-Landau energy by kinetic averaging. Comm. Pure Appl. Math. 54 (2001) 1096-1109. CrossRef
W. Jin, Singular perturbation and the energy of folds, Ph.D. Thesis. Courant Insitute, New York (1999).
Jin, W. and Kohn, R.V., Singular perturbation and the energy of folds. J. Nonlinear Sci. 10 (2000) 355-390. CrossRef
Ortiz, M. and Gioia, G., The morphology and folding patterns of buckling driven thin-film blisters. J. Mech. Phys. Solids 42 (1994) 531-559. CrossRef