Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-29T03:41:12.001Z Has data issue: false hasContentIssue false

Asymmetric heteroclinicdouble layers

Published online by Cambridge University Press:  15 August 2002

Michelle Schatzman*
Affiliation:
MAPLY, CNRS et Université Claude Bernard, 69622 Villeurbanne Cedex, France; schatz@numerix.univ-lyon1.fr.
Get access

Abstract

Let W be a non-negative function of class C3 from $\xR^2$ to $\xR$, which vanishes exactly at two points a and b. Let S1(a, b) be the set of functions of a real variable which tend to a at -∞ and to b at +∞ and whose one dimensional energy $$ E_1(v)=\int_\xR\bigl[W(v)+\lvert v'\rvert^2/2\bigr]\,\xdif x $$ is finite. Assume that there exist two isolated minimizers z+ and z- of the energy E1 over S1(a, b). Under a mild coercivity condition on the potential W and a generic spectral condition on the linearization of the one-dimensional Euler–Lagrange operator at z+ and z-, it is possible to prove that there exists a function u from $\xR^2$ to itself which satisfies the equation $$ -\Delta u + \xDif W(u)^\mathsf{T}=0, $$ and the boundary conditions $$ \lim_{x_2\to +\infty} u(x_1,x_2)=z_+(x_1-m_+),\phantom{\mathbf{a}} \lim_{x_2\to -\infty} u(x_1,x_2)=z_-(x_1-m_-), \lim_{x_1\to -\infty}u(x_1,x_2)=\mathbf{a},\phantom{z_+(x_1-m_+)} \lim_{x_1\to+\infty}u(x_1,x_2)=\mathbf{b}. $$ The above convergences are exponentially fast; the numbers m+ and m- are unknowns of the problem.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alama, S., Bronsard, L. and Gui, C., Stationary layered solutions in ${\xR}\sp 2$ for an Allen-Cahn system with multiple well potential. Calc. Var. Partial Diff. Eqs. 5 (1997) 359-390. CrossRef
Fonseca, I. and Tartar, L., The gradient theory of phase transitions for systems with two potential wells. Proc. Roy. Soc. Edinburgh Sect. A 111 (1989) 89-102. CrossRef
Ishige, K., The gradient theory of the phase transitions in Cahn-Hilliard fluids with Dirichlet boundary conditions. SIAM J. Math. Anal. 27 (1996) 620-637. CrossRef
T. Kato, Perturbation theory for linear operators. Springer-Verlag, Berlin (1995). Reprint of the 1980 edition.
L.D. Landau and E.M. Lifchitz, Physique statistique. Ellipses (1994).
J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications, Vol. 1. Dunod, Paris (1968). Travaux et Recherches Mathématiques, No. 17.
Modica, L., The gradient theory of phase transitions and the minimal interface criterion. Arch. Rational Mech. Anal. 98 (1987) 123-142. CrossRef
Modica, L., Gradient theory of phase transitions with boundary contact energy. Ann. Inst. H. Poincaré Anal. Non Linéaire 4 (1987) 487-512. CrossRef
Owen, N.C., Rubinstein, J. and Sternberg, P., Minimizers and gradient flows for singularly perturbed bi-stable potentials with a Dirichlet condition. Proc. Roy. Soc. London Ser. A 429 (1990) 505-532. CrossRef
M. Reed and B. Simon, Methods of modern mathematical physics. I. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York, Second Edition (1980). Functional analysis.
Sternberg, P., Vector-valued local minimizers of nonconvex variational problems. Rocky Mountain J. Math. 21 (1991) 799-807. Current directions in nonlinear partial differential equations. Provo, UT (1987). CrossRef
A.I. Volpert, V.A. Volpert and V.A. Volpert, Traveling wave solutions of parabolic systems. American Mathematical Society, Providence, RI, 1994. Translated from the Russian manuscript by James F. Heyda.