Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-26T06:07:30.418Z Has data issue: false hasContentIssue false

Conjugate-cut loci and injectivity domains on two-spheres of revolution∗∗∗∗∗

Published online by Cambridge University Press:  21 February 2013

Bernard Bonnard
Affiliation:
INRIA, 2004 route des lucioles, 06902 Sophia Antipolis, France. bernard.bonnard@u-bourgogne.fr Institut de Mathématiques de Bourgogne, 9 avenue Savary, 21078 Dijon, France; jean-baptiste.caillau@u-bourgogne.fr; gabriel.janin@u-bourgogne.fr
Jean-Baptiste Caillau
Affiliation:
Institut de Mathématiques de Bourgogne, 9 avenue Savary, 21078 Dijon, France; jean-baptiste.caillau@u-bourgogne.fr; gabriel.janin@u-bourgogne.fr
Gabriel Janin
Affiliation:
Institut de Mathématiques de Bourgogne, 9 avenue Savary, 21078 Dijon, France; jean-baptiste.caillau@u-bourgogne.fr; gabriel.janin@u-bourgogne.fr
Get access

Abstract

In a recent article [B. Bonnard, J.-B. Caillau, R. Sinclair and M. Tanaka, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 26 (2009) 1081–1098], we relate the computation of the conjugate and cut loci of a family of metrics on two-spheres of revolution whose polar form is g = dϕ2 + m(ϕ)dθ2 to the period mapping of the ϕ-variable. One purpose of this article is to use this relation to evaluate the cut and conjugate loci for a family of metrics arising as a deformation of the round sphere and to determine the convexity properties of the injectivity domains of such metrics. These properties have applications in optimal control of space and quantum mechanics, and in optimal transport.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agrachev, A., Boscain, U. and Sigalotti, M., A Gauss-Bonnet-like formula on two-dimensional almost-Riemannian manifolds. Discrete Contin. Dyn. Syst. 20 (2008) 801822. Google Scholar
Berger, M., Volume et rayon d’injectivité dans les variétés riemanniennes de dimension 3. Osaka J. Math. 14 (1977) 191200. Google Scholar
M. Berger, A panoramic view of Riemannian geometry. Springer-Verlag, Berlin (2003).
Besson, G., Géodésiques des surfaces de révolution. Séminaire de Théorie Spectrale et Géométrie S9 (1991) 3338. Google Scholar
Boltyanskii, V.G., Sufficient conditions for optimality and the justification of the dynamic programming method. SIAM J. Control 4 (1966) 326361. Google Scholar
B. Bonnard and J.-B. Caillau, Metrics with equatorial singularities on the sphere. HAL preprint No. 00319299 (2008) 1–30.
Bonnard, B. and Caillau, J.-B., Geodesic flow of the averaged controlled Kepler equation. Forum Math. 21 (2009) 797814. Google Scholar
Bonnard, B., Caillau, J.-B., Sinclair, R. and Tanaka, M., Conjugate and cut loci of a two-sphere of revolution with application to optimal control. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 26 (2009) 10811098. Google Scholar
Bonnard, B., Caillau, J.-B. and Rifford, L., Convexity of injectivity domains on the ellipsoid of revolution: the oblate case, C. R. Acad. Sci. Paris, Sér. I 348 (2010) 13151318. Google Scholar
B. Bonnard, J.-B. Caillau and O. Cots, Energy minimization in two-level dissipative quantum control: the integrable case. Proc. of 8th AIMS Conference on Dynamical Systems, Differential Equations and Applications, Dresden (2010). Discrete Contin. Dyn. Syst. suppl. (2011) 229–239.
Bonnard, B., Charlot, G., Ghezzi, R. and Janin, G., The sphere and the cut locus at a tangency point in two-dimensional almost-Riemannian geometry. J. Dyn. Control Syst. 17 (2011) 141161. Google Scholar
B. Bonnard, O. Cots and N. Shcherbakova, Energy minimization problem in two-level dissipative quantum systems. J. Math. Sci. 147 (2012).
J.-B. Caillau, B. Daoud and J. Gergaud, On some Riemannian aspects of two and three-body controlled problems. Recent Advances in Optimization and its Applications in Engineering. Springer (2010) 205–224. Proc. of the 14th Belgium-Franco-German conference on Optimization, Leuven (2009).
Faridi, A. and Schucking, E., Geodesics and deformed spheres. Proc. Amer. Math. Soc. 100 (1987) 522525. Google Scholar
Figalli, A., Rifford, L. and Villani, C., Nearly round spheres look convex. Amer. J. Math. 134 (2012) 109139. Google Scholar
G.-H. Halphen, Traité des fonctions elliptiques et de leurs applications. Première partie, Gauthier-Villars (1886).
Itoh, J. and Kiyohara, K., The cut loci and the conjugate loci on ellipsoids. Manuscripta Math. 114 (2004) 247264. Google Scholar
G. Janin, Contrôle optimal et applications au transfert d’orbite et à la géométrie presque Riemannienne. Ph.D. thesis, Université de Bourgogne (2010).
D. Lawden, Elliptic functions and applications. Springer-Verlag (1989).
Myers, S.B., Connections between differential geometry and topology I. Simply connected surfaces II. Duke Math. J. 1 (1935) 376391; 2 (1936) 95–102. Google Scholar
Poincaré, H., Sur les lignes géodésiques des surfaces convexes. Trans. Amer. Math. Soc. 6 (1905) 237274. Google Scholar
K. Shiohama, T. Shioya and M. Tanaka, The geometry of total curvature on complete open surfaces. Cambridge University Press (2003).
Sinclair, R. and Tanaka, M., The cut locus of a two-sphere of revolution and Toponogov’s comparison theorem. Tohoku Math. J. 59 (2007) 379399. Google Scholar
M. Spivak, A comprehensive introduction to differential geometry II. Publish or Perish (1979).
C. Villani, Optimal transport, Old and new. Springer-Verlag (2009).