Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-28T00:41:16.275Z Has data issue: false hasContentIssue false

Control for the sine-gordon equation

Published online by Cambridge University Press:  15 October 2004

Madalina Petcu
Affiliation:
Laboratoire d'Analyse Numérique, Université de Paris–Sud, Orsay, France; madalina.petcu@math.u-psud.fr. The Institute of Mathematics of the Romanian Academy, Bucharest, Romania.
Roger Temam
Affiliation:
Laboratoire d'Analyse Numérique, Université de Paris–Sud, Orsay, France; madalina.petcu@math.u-psud.fr. The Institute for Scientific Computing and Applied Mathematics, Indiana University, Bloomington, IN, USA.
Get access

Abstract

In this article we apply the optimal andthe robust control theory to the sine-Gordon equation. In our casethe control is given by the boundary conditions and we work in a finitetime horizon. We present at the beginning the optimal control problemand we derive a necessary condition of optimality and we continue byformulating a robust control problem for which existence and uniquenessof solutions are derived.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abergel, F. and Temam, R., On some control problems in fluid mechanics. Theor. Comput. Fluid Dyn. 1 (1990) 303-325. CrossRef
G.P. Agrawal, Nonlinear Fiber Optics. 2nd ed., Academic, San Diego, California (1995).
Bewley, T.R., Temam, R. and Ziane, M., A general framework for robust control in fluid mechanics. Physica D 138 (2000) 360-392. CrossRef
R.W. Boyd, Nonlinear Optics. Academic, Boston (1992).
I. Ekeland and R. Temam, Convex Analysis and Variational Problems. Classics. Appl. Math. 28 (1999).
Gunzburger, M., Adjoint equation-based methods for control problems in incompressible, viscous flows. Flow Turbul. Combust. 65 (2000) 249-272. CrossRef
Gunzburger, M. and Imanuvilov, O. Yu., Optimal control of stationary, Iow Mach number, highly nonisothermal, viscous flows. ESAIM: COCV 5 (2000) 477-500. CrossRef
M. Green and D.J.N. Limebeer, Linear robust control. Pretice-Hall (1995).
Hu, C. and Temam, R., Robust control of the Kuramoto-Sivashinsky equation. Dynam. Cont. Discrete Impuls Systems B 8 (2001) 315-338.
J.L. Lions, Problèmes aux limites dans les equations aux dérivées partielles. Presses de l'Université de Montreal (1965), reedited in 2002 as part of [11].
J.L. Lions, Selected work. 3 volumes, EDP Sciences, Paris, France (2003).
Marion, M., Attractors for reaction-diffusion equations; Existence and estimate of their dimension. Appl. Anal. 25 (1987) 101-147.
Simon, J., Compact sets in space $L\sp p(0,T;B)$ . Ann. Mat. Pura Appl. 4 (1987) 67-96.
R. Temam, Navier-Stokes Equations. North-Holland, Amsterdam (1977), reedited in the series: AMS Chelsea, AMS Providence (2001).
R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics. Appl. Math. Sci. 68, Second augmented edition, Springer-Verlag, New York (1997).