Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-14T18:34:07.005Z Has data issue: false hasContentIssue false

Control of a clamped-free beam by a piezoelectric actuator

Published online by Cambridge University Press:  20 June 2006

Emmanuelle Crépeau
Affiliation:
Bâtiment Fermat, Université de Versailles Saint-Quentin, 45 avenue des États-Unis, 78035 Versailles, France; crepeau@math.uvsq.fr
Christophe Prieur
Affiliation:
LAAS – CNRS, 7 avenue du Colonel Roche, 31077 Toulouse, France; Christophe.Prieur@laas.fr
Get access

Abstract

We consider a controllability problem for a beam, clamped at one boundary andfree at the other boundary, with an attached piezoelectric actuator. ByHilbert Uniqueness Method (HUM)and new results on diophantine approximations, weprove that the space of exactly initial controllable data depends on thelocation of the actuator. We also illustrate these results with numericalsimulations.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

C. Baiocchi, V. Komornik and P. Loreti, Ingham type theorems and applications to control theory. Boll. Unione Mat. Ital., Sez. B, Artic. Ric. Mat. 2 (1999) 33–63.
Balamurugan, V. and Narayanan, S., Shell finite element for smart piezoelectric composite plate/shell structures and its application to the study of active vibration control. Finite Elem. Anal. Des. 37 (2001) 713738. CrossRef
J.W.S. Cassels, An introduction to diophantine approximation. Moskau: Verlag 213 S. (1961).
Crépeau, E., Exact boundary controllability of the Boussinesq equation on a bounded domain. Diff. Int. Equ. 16 (2003) 303326.
E. Crépeau, Contrôlabilité exacte d'équations dispersives issues de la mécanique. Thèse de l'Université de Paris-Sud, avalaible at www.math.ursq.fr/~crepeau/PUBLI/these1.html.
P. Destuynder, I. Legrain, L. Castel and N. Richard, Theorical, numerical and experimental discussion of the use of piezoelectric devices for control-structure interaction. Eur. J. Mech., A/Solids 11 (1992) 97–106.
Destuynder, P., A mathematical analysis of a smart-beam which is equipped with piezoelectric actuators. Control Cybern. 28 (1999) 503530.
Fliess, M., Mounier, H., Rouchon, P. and Rudolph, J., Linear systems over Mikusinski operators and control of a flexible beam. ESAIM: Proc. 2 (1997) 183193. CrossRef
P. Germain, Mecanique, Tome II. Ellipses (1996).
Halim, D. and Moheimani, S.O.R., Spatial Resonant Control of Flexible Structures – Applications to a Piezoelectric Laminate Beam. IEEE Trans. Control Syst. Tech. 9 (2001) 3753. CrossRef
Halim, D. and Moheimani, S.O.R., Spatial H 2 control of a piezoelectric laminate beam: experimental implementation. IEEE Trans. Control Syst. Tech. 10 (2002) 533546. CrossRef
Hwang, W.S. and Park, H.C., Finite element modeling of piezoelectric sensors and actuator. AIAA Journal 31 (1993) 930937. CrossRef
A.E. Ingham, Some trigonometrical inequalities with applications to the theory of series. Math. Zeitschr. 41 (1936) 367–379.
S. Lang, Introduction to diophantine approximations. Springer-Verlag (1991).
S. Leleu, Amortissement actif des vibrations d'une structure flexible de type plaque à l'aide de transducteurs piézoélectriques. Thèse, ENS de Cachan (2002).
J.L. Lions, Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués, Tome 1, Contrôlabilité exacte, Collection de recherche en mathématiques appliquées 8 (Masson, Paris), 1988. distribués, Masson, Paris (1988).
L. Meirovitch, Elements of vibration analysis, Düsseldorf, McGraw-Hill (1975).
Rebarber, R., Spectral assignability for distribued parameter systems with unbounded scalar control. SIAM J. Control Optim. 27 (1989) 148169. CrossRef
Rosier, L., Exact boundary controllability for the linear KdV equation – a numerical study. ESAIM: Proc. 4 (1998) 255267.
Rudolph, J. and Woittennek, F., Flatness based boundary control of piezoelectric benders. Automatisierungstechnik 50 (2002) 412421. CrossRef
Smith, R.S., Chu, C.C. and Fanson, J.L., The design of $H_\infty$ controllers for an experimental non-collocated flexible structure Problem. IEEE Trans. Control Syst. Tech. 2 (1994) 101109. CrossRef
S. Tliba and H. Abou-Kandil, $H_\infty$ controller design for active vibration damping of a smart flexible structure using piezoelectric transducers, in 4th Symp. IFAC on Robust Control Design (ROCOND 2003), Milan, Italy (2003).
Tucsnak, M., Regularity and exact controllability for a beam with piezoelectric actuator. SIAM J. Control Optim. 34 (1996) 922930. CrossRef