Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T21:55:23.609Z Has data issue: false hasContentIssue false

Control of the surface of a fluid by a wavemaker

Published online by Cambridge University Press:  15 June 2004

Lionel Rosier*
Affiliation:
Institut Elie Cartan, Université Henri Poincaré Nancy 1, BP 239, 54506 Vandœuvre-lès-Nancy Cedex, France; rosier@iecn.u-nancy.fr.
Get access

Abstract

The control of the surface of water in a long canal bymeans of a wavemaker is investigated. The fluid motion is governed by the Korteweg-de Vries equation in Lagrangian coordinates.The null controllability of the elevation of the fluid surface is obtained thanks to a Carleman estimate and some weighted inequalities. The global uncontrollability is also established.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

S.N. Antontsev, A.V. Kazhikov and V.N. Monakhov, Boundary values problems in mechanics of nonhomogeneous fluids. North-Holland, Amsterdam (1990).
Benilan, P. and Gariepy, R., Strong solutions in L 1 of degenerate parabolic equations. J. Differ. Equations 119 (1995) 473-502. CrossRef
Bona, J.L., Chen, M. and Saut, J.-C., Boussinesq Equations and Other Systems for Small-Amplitude Long Waves in Nonlinear Dispersive Media. I: Derivation and Linear Theory. J. Nonlinear Sci. 12 (2002) 283-318. CrossRef
Bona, J.L., Sun, S. and Zhang, B.-Y., Non-homogeneous Boundary-Value Problem, A for the Korteweg-de Vries Equation Posed on a Finite Domain. Commun. Partial Differ. Equations 28 (2003) 1391-1436. CrossRef
Bona, J.L. and Winther, R., The Korteweg-de Vries equation, posed in a quarter-plane. SIAM J. Math. Anal. 14 (1983) 1056-1106. CrossRef
Coron, J.-M., On the controllability of the 2-D incompressible perfect fluids. J. Math. Pures Appl. 75 (1996) 155-188.
Coron, J.-M., Local controllability of a 1-D tank containing a fluid modeled by the shallow water equations, A tribute to J.L. Lions. ESAIM: COCV 8 (2002) 513-554. CrossRef
Crépeau, E., Exact boundary controllability of the Korteweg-de Vries equation around a non-trivial stationary solution. Int. J. Control 74 (2001) 1096-1106. CrossRef
Fernández-Cara, E., Null controllability of the semilinear heat equation. ESAIM: COCV 2 (1997) 87-103. CrossRef
A.V. Fursikov and O.Y. Imanuvilov, On controllability of certain systems simulating a fluid flow, in Flow Control, M.D. Gunzburger Ed., Springer-Verlag, New York, IMA Vol. Math. Appl. 68 (1995) 149-184.
Kato, T., On the Cauchy problem for the (generalized) Korteweg-de Vries equations. Stud. App. Math. 8 (1983) 93-128.
J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes, Vol. 1. Dunod, Paris (1968).
G. Mathieu-Girard, Étude et contrôle des équations de la théorie “Shallow water” en dimension un. Ph.D. thesis, Université Paul Sabatier, Toulouse III (1998).
Micu, S., On the controllability of the linearized Benjamin-Bona-Mahony equation. SIAM J. Control Optim. 39 (2001) 1677-1696. CrossRef
S. Micu and J.H. Ortega, On the controllability of a linear coupled system of Korteweg-de Vries equations. Mathematical and numerical aspects of wave propagation (Santiago de Compostela, 2000). Philadelphia, PA SIAM (2000) 1020-1024.
Mottelet, S., Controllability and stabilization of a canal with wave generators. SIAM J. Control Optim. 38 (2000) 711-735. CrossRef
S. Mottelet, Controllability and stabilization of liquid vibration in a container during transportation. (Preprint.)
Petit, N. and Rouchon, P., Dynamics and solutions to some control problems for water-tank systems. IEEE Trans. Automat. Control 47 (2002) 594-609. CrossRef
Rosier, L., Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain. ESAIM: COCV 2 (1997) 33-55, http://www.edpsciences.org/cocv CrossRef
Rosier, L., Exact boundary controllability for the linear Korteweg-de Vries equation – a numerical study. ESAIM Proc. 4 (1998) 255-267, http://www.edpsciences.org/proc CrossRef
Rosier, L., Exact boundary controllability for the linear Korteweg-de Vries equation on the half-line. SIAM J. Control Optim. 39 (2000) 331-351. CrossRef
Russell, D.L. and Zhang, B.-Y., Controllability and stabilizability of the third-order linear dispersion equation on a periodic domain. SIAM J. Control Optim. 31 (1993) 659-673. CrossRef
Russell, D.L. and Zhang, B.-Y., Exact controllability and stabilizability of the Korteweg-de Vries equation. Trans. Amer. Math. Soc. 348 (1996) 3643-3672. CrossRef
J. Simon, Compact Sets in the Space $L^p(0,T;B)$ . Ann. Mat. Pura Appl. (IV) CXLVI (1987) 65-96.
G.B. Whitham, Linear and nonlinear waves. A Wiley-Interscience publication, Wiley, New York (1999) reprint of the 1974 original.
E. Zeidler, Nonlinear functional analysis and its applications, Part 1. Springer-Verlag, New York (1986).
Zhang, B.-Y., Exact boundary controllability of the Korteweg-de Vries equation. SIAM J. Control Optim. 37 (1999) 543-565. CrossRef