Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-13T08:21:45.070Z Has data issue: false hasContentIssue false

Exact controllability in fluid – solid structure:The Helmholtz model

Published online by Cambridge University Press:  15 March 2005

Jean-Pierre Raymond
Affiliation:
Université Paul Sabatier, UMR 5640, Laboratoire MIP, 31062 Toulouse Cedex 4, France; raymond@mip.ups-tlse.fr
Muthusamy Vanninathan
Affiliation:
IISc-TIFR Mathematics Programme, TIFR Centre, Bangalore 560012, India.
Get access

Abstract

A model representing the vibrations of a fluid-solid coupled structure is considered. Following Hilbert Uniqueness Method (HUM) introduced by Lions, we establish exact controllability results for this model with an internal controlin the fluid part and there is no control in the solid part. Novel features which arise because of the coupling are pointed out. It is a source of difficulty in the proof of observability inequalities, definition of weak solutions and the proof of controllability results.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Avalos, G., Lasiecka, I., Exact controllability of structural acoustic interactions. J. Math. Pures Appl. 82 (2003) 10471073. CrossRef
V. Barbu, T. Precupanu, Convexity and Optimization in Banach Spaces, 2nd ed., D. Reidel, Dordrecht (1986).
A. Bensoussan, G. Da Prato, M.C. Delfour and S.K. Mitter, Representation and Control of Infinite Dimensional Systems. Birkhäuser, Boston 1 (1992).
C. Conca, J. Planchard, B. Thomas and M. Vanninathan, Problèmes mathématiques en couplage fluide-structure. Eyrolles, Paris (1994).
C. Conca, J. Planchard and M. Vanninathan, Fluids and periodic structures. Masson and J. Wiley, Paris (1995).
L. Cot, J.-P. Raymond and J. Vancostenoble, Exact controllability of an aeroacoustic model. In preparation.
R. Dautray and J.-L. Lions, Analyse Mathématique et Calcul Scientifique. Masson, Paris (1987).
Destuynder, P. and Gout d'Henin, E., Existence and uniqueness of a solution to an aeroacoustic model. Chin. Ann. Math. 23B (2002) 1124. CrossRef
E. Gout d'Henin, Ondes de Stoneley en interaction fluide-structure. Ph.D. Thesis, Université de Poitiers (2002).
J.-L. Lions, Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués. Masson, Paris (1988).
Micu, S. and Zuazua, E., Boundary controllability of a linear hybrid system arising in the control of noise. SIAM J. Control Optim. 35 (1997) 531555. CrossRef
J.J. Moreau, Bounded variation in time, in Topics in Nonsmooth Mechanics, J.J. Moreau, P.D. Panagiotopoulos, G. Strang Eds. Birkhäuser, Boston (1988) 1–74.