Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-26T07:43:02.895Z Has data issue: false hasContentIssue false

Global minimizers for axisymmetric multiphasemembranes

Published online by Cambridge University Press:  26 July 2013

Rustum Choksi
Affiliation:
Department of Mathematics and Statistics, McGill University, 805 Sherbrooke Street West, Montreal, Quebec, H3A 2K6, Canada. rchoksi@math.mcgill.ca
Marco Morandotti
Affiliation:
Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA; marcomor@andrew.cmu.edu
Marco Veneroni
Affiliation:
Department of Mathematics “F. Casorati”, University of Pavia, Via Ferrata 1, 27100 Pavia, Italy; marco.veneroni@unipv.it
Get access

Abstract

We consider a Canham − Helfrich − type variational problem defined over closed surfacesenclosing a fixed volume and having fixed surface area. The problem models the shape ofmultiphase biomembranes. It consists of minimizing the sum of the Canham − Helfrichenergy, in which the bending rigidities and spontaneous curvatures are nowphase-dependent, and a line tension penalization for the phase interfaces. By restrictingattention to axisymmetric surfaces and phase distributions, we extend our previous resultsfor a single phase [R. Choksi and M. Veneroni, Calc. Var. Partial Differ. Equ.(2012). DOI:10.1007/s00526-012-0553-9] and prove existence of a globalminimizer.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems. Oxford Science Publications (2000).
L. Ambrosio, N. Gigli and G. Savaré, Gradient flows in metric spaces and in the space of probability measures. Lectures in Mathematics, ETH Zürich. Birkhäuser Verlag, Basel (2005).
Baumgart, T., Das, S., Webb, W.W. and Jenkins, J.T., Membrane elasticity in giant vesicles with fluid phase coexistence. Biophys. J. 89 (2005) 10671080. Google ScholarPubMed
Baumgart, T., Hess, S.T. and Webb, W.W., Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension. Nature 425 (2003) 821824. Google Scholar
Bellettini, G. and Mugnai, L., A varifolds representation of the relaxed elastica functional. J. Convex Anal. 14 (2007) 543564. Google Scholar
Canham, P.B., The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. J. Theor. Biol. 26 (1970) 6180. Google ScholarPubMed
R. Choksi and M. Veneroni, Global minimizers for the doubly-constrained Helfrich energy: the axisymmetric case. Calc. Var. Partial Differ. Equ. (2012). DOI:10.1007/s00526-012-0553-9.
Deseri, L., Piccioni, M.D. and Zurlo, G., Derivation of a new free energy for biological membranes. Contin. Mech. Thermodyn. 20 (2008) 255273. Google Scholar
M.P. do Carmo, Differential geometry of curves and surfaces. Prentice-Hall Inc., Englewood Cliffs, N.J. (1976). Translated from the Portuguese.
Elliott, C.M. and Stinner, B., Modeling and computation of two phase geometric biomembranes using surface finite elements. J. Comput. Phys. 229 (2010) 65856612. Google Scholar
Elliott, C.M. and Stinner, B., A surface phase field model for two-phase biological membranes. SIAM J. Appl. Math. 70 (2010) 29042928. Google Scholar
Elson, E.L., Fried, E., Dolbow, J.E. and Genin, G.M., Phase separation in biological membranes: integration of theory and experiment. Annu. Rev. Biophys. 39 (2010) 207226. Google Scholar
Evans, E., Bending resistance and chemically induced moments in membrane bilayers. Biophys. J. 14 (1974) 923931. Google ScholarPubMed
L.C. Evans and R.F. Gariepy, Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics. CRC Press (1992).
Helfrich, W., Elastic properties of lipid bilayers: Theory and possible experiments. Z. Naturforsch. Teil C 28 (1973) 693703. Google ScholarPubMed
M. Helmers, Convergence of an approximation for rotationally symmetric two-phase lipid bilayer membranes. Technical report, Institute for Applied Mathematics, University of Bonn (2011).
M. Helmers, Kinks in two-phase lipid bilayer membranes. Calc. Var. Partial Differ. Equ. (2012). DOI: 10.1007/s00526-012-0550-z.
Hutchinson, J.E., Second fundamental form for varifolds and the existence of surfaces minimising curvature. Indiana Univ. Math. J. 35 (1986) 4571. Google Scholar
Jülicher, F. and Lipowsky, R., Domain-induced budding of vesicles. Phys. Rev. Lett. 70 (1993) 29642967. Google ScholarPubMed
Jülicher, F. and Lipowsky, R., Shape transformations of vesicles with intramembrane domains. Phys. Rev. E 53 (1996) 26702683. Google ScholarPubMed
Lowengrub, J.S., Rätz, A. and Voigt, A., Phase-field modeling of the dynamics of multicomponent vesicles: spinodal decomposition, coarsening, budding, and fission. Phys. Rev. E 79 (2009) 0311926. Google ScholarPubMed
R. Moser, A generalization of Rellich’s theorem and regularity of varifolds minimizing curvature. Technical Report 72, Max-Planck-Institut for Mathematics in the Sciences (2001).
Seifert, U., Configurations of fluid membranes and vesicles. Adv. Phys. 46 (1997) 13137. Google Scholar
Sohn, J.S., Tseng, Y.-H., Li, S., Voigt, A. and Lowengrub, J.S., Dynamics of multicomponent vesicles in a viscous fluid. J. Comput. Phys. 229 (2010) 119144. Google Scholar
Templer, R.H., Khoo, B.J. and Seddon, J.M., Gaussian curvature modulus of an amphiphilic monolayer. Langmuir 14 (1998) 74277434. Google Scholar
Wang, X. and Du, Q., Modelling and simulations of multi-component lipid membranes and open membranes via diffuse interface approaches. J. Math. Biol. 56 (2008) 347371. Google Scholar
T.J. Willmore, Riemannian geometry. Clarendon Press, Oxford (1993).
G. Zurlo, Material and Geometric Phase Transitions in Biological Membranes. Ph.D. thesis, University of Pisa (2006).