Published online by Cambridge University Press: 15 September 2003
The aim of this paper is to study a class of domains whose geometry strongly depends on time namely. More precisely, we consider parabolic equations in perforated domains with rapidly pulsing (in time) periodic perforations, with a homogeneous Neumann condition on the boundary of the holes. We study the asymptotic behavior of the solutions as the period ε of the holes goes to zero. Since standard conservation laws do not hold in this model, a first difficulty is to get a priori estimates of the solutions. We obtain them in a weighted space where the weight is the principal eigenfunction of an “adjoint” periodic time-dependent eigenvalue problem. This problem is not a classical one, and its investigation is an important part of this work. Then, by using the multiple scale method, we construct the leading terms of a formal expansion (with respect to ε) of the solution and give the limit “homogenized” problem. An interesting peculiarity of the model is that, depending on the geometry of the holes, a large convection term may appear in the limit equation.