Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T21:00:21.229Z Has data issue: false hasContentIssue false

Observability properties of a semi-discrete 1d wave equation derived from a mixed finite element methodon nonuniform meshes

Published online by Cambridge University Press:  19 December 2008

Sylvain Ervedoza*
Affiliation:
Laboratoire de Mathématiques de Versailles, Université de Versailles Saint-Quentin, 45 avenue des États-Unis, 78035 Versailles Cedex, France. sylvain.ervedoza@math.uvsq.fr
Get access

Abstract

The goal of this article is to analyze the observability properties for a space semi-discrete approximation scheme derived from a mixed finite element method of the 1d wave equation on nonuniform meshes. More precisely, we prove that observability properties hold uniformly with respect to the mesh-size under some assumptions, which, roughly, measures the lack of uniformity of the meshes, thus extending the work [Castro and Micu, Numer. Math.102 (2006) 413–462] to nonuniform meshes. Our results are based on a precise description of the spectrum of the discrete approximation schemes on nonuniform meshes, and the use of Ingham's inequality. We also mention applications to the boundary null controllability of the 1d wave equation, and to stabilization properties for the 1d wave equation. We finally present some applications for the corresponding fully discrete schemes, based on recent articles by the author.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

H.T. Banks, K. Ito and C. Wang, Exponentially stable approximations of weakly damped wave equations, in Estimation and control of distributed parameter systems (Vorau, 1990), Internat. Ser. Numer. Math. 100, Birkhäuser, Basel (1991) 1–33.
Bérenger, J.-P., A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114 (1994) 185200. CrossRef
Bogomolny, E., Bohigas, O. and Schmit, C., Spectral properties of distance matrices. J. Phys. A 36 (2003) 35953616. CrossRef
Bridges, T.J. and Reich, S., Numerical methods for Hamiltonian PDEs. J. Phys. A 39 (2006) 52875320. CrossRef
Castro, C. and Micu, S., Boundary controllability of a linear semi-discrete 1-d wave equation derived from a mixed finite element method. Numer. Math. 102 (2006) 413462. CrossRef
Castro, C., Micu, S. and Münch, A., Numerical approximation of the boundary control for the wave equation with mixed finite elements in a square. IMA J. Numer. Anal. 28 (2008) 186214. CrossRef
Cowsar, L.C., Dupont, T.F. and Wheeler, M.F., A priori estimates for mixed finite element methods for the wave equations. Comput. Methods Appl. Mech. Engrg. 82 (1990) 205222. CrossRef
Cox, S. and Zuazua, E., The rate at which energy decays in a damped string. Comm. Partial Differ. Equ. 19 (1994) 213243. CrossRef
Cox, S. and Zuazua, E., The rate at which energy decays in a string damped at one end. Indiana Univ. Math. J. 44 (1995) 545573. CrossRef
Ervedoza, S. and Zuazua, E., Perfectly matched layers in 1-d: Energy decay for continuous and semi-discrete waves. Numer. Math. 109 (2008) 597634. CrossRef
S. Ervedoza and E. Zuazua, Uniformly exponentially stable approximations for a class of damped systems. J. Math. Pures Appl. (to appear).
Ervedoza, S., Zheng, C. and Zuazua, E., On the observability of time-discrete conservative linear systems. J. Funct. Anal. 254 (2008) 30373078. CrossRef
Frank, J., Moore, B.E. and Reich, S., Linear PDEs and numerical methods that preserve a multisymplectic conservation law. SIAM J. Sci. Comput. 28 (2006) 260277 (electronic). CrossRef
Glowinski, R., Ensuring well-posedness by analogy: Stokes problem and boundary control for the wave equation. J. Comput. Phys. 103 (1992) 189221. CrossRef
Glowinski, R., Kinton, W. and Wheeler, M.F., A mixed finite element formulation for the boundary controllability of the wave equation. Internat. J. Numer. Methods Engrg. 27 (1989) 623635. CrossRef
Haraux, A., Une remarque sur la stabilisation de certains systèmes du deuxième ordre en temps. Portugal. Math. 46 (1989) 245258.
Infante, J.A. and Zuazua, E., Boundary observability for the space semi discretizations of the 1-d wave equation. Math. Model. Num. Ann. 33 (1999) 407438. CrossRef
Ingham, A.E., Some trigonometrical inequalities with applications to the theory of series. Math. Z. 41 (1936) 367379. CrossRef
Labbé, S. and Trélat, E., Uniform controllability of semidiscrete approximations of parabolic control systems. Systems Control Lett. 55 (2006) 597609. CrossRef
G. Lebeau, Équations des ondes amorties, in Séminaire sur les Équations aux Dérivées Partielles, 1993–1994, École Polytechnique, France (1994).
J.-L. Lions, Contrôlabilité exacte, Perturbations et Stabilisation de Systèmes Distribués, Tome 1 : Contrôlabilité exacte, RMA 8. Masson (1988).
F. Macià, The effect of group velocity in the numerical analysis of control problems for the wave equation, in Mathematical and numerical aspects of wave propagation – WAVES 2003, Springer, Berlin (2003) 195–200.
Münch, A., A uniformly controllable and implicit scheme for the 1-D wave equation. ESAIM: M2AN 39 (2005) 377418. CrossRef
Negreanu, M. and Zuazua, E., Convergence of a multigrid method for the controllability of a 1-d wave equation. C. R. Math. Acad. Sci. Paris 338 (2004) 413418. CrossRef
Negreanu, M., Matache, A.-M. and Schwab, C., Wavelet filtering for exact controllability of the wave equation. SIAM J. Sci. Comput. 28 (2006) 18511885 (electronic). CrossRef
Ramdani, K., Takahashi, T. and Tucsnak, M., Uniformly exponentially stable approximations for a class of second order evolution equations – application to LQR problems. ESAIM: COCV 13 (2007) 503527. CrossRef
Tcheugoué Tébou, L.R. and Zuazua, E., Uniform exponential long time decay for the space semi-discretization of a locally damped wave equation via an artificial numerical viscosity. Numer. Math. 95 (2003) 563598. CrossRef
Tcheugoué Tebou, L.R. and Zuazua, E., Uniform boundary stabilization of the finite difference space discretization of the 1-d wave equation. Adv. Comput. Math. 26 (2007) 337365. CrossRef
Trefethen, L.N., Group velocity in finite difference schemes. SIAM Rev. 24 (1982) 113136. CrossRef
R.M. Young, An introduction to nonharmonic Fourier series. Academic Press Inc., San Diego, CA, first edition (2001).
Zuazua, E., Boundary observability for the finite-difference space semi-discretizations of the 2-D wave equation in the square. J. Math. Pures Appl. 78 (1999) 523563. CrossRef
Zuazua, E., Propagation, observation, and control of waves approximated by finite difference methods. SIAM Rev. 47 (2005) 197243 (electronic). CrossRef