Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-13T04:17:22.459Z Has data issue: false hasContentIssue false

On a variant of Korn's inequality arisingin statistical mechanics

Published online by Cambridge University Press:  15 August 2002

L. Desvillettes
Affiliation:
Centre de Mathématiques et Leurs Applications, École Normale Supérieure de Cachan, 61 avenue du Président Wilson, 94235 Cachan, France; desville@cmla.ens-cachan.fr.
Cédric Villani
Affiliation:
UMPA, École Normale Supérieure de Lyon, 69364 Lyon Cedex 07, France; cvillani@umpa.ens-lyon.fr.
Get access

Abstract

We state and prove a Korn-like inequality for a vector field in abounded open set of $\mathbb{R}^N$ , satisfying a tangency boundary condition.This inequality, which is crucial in our study of the trend towardsequilibrium for dilute gases, holds true if and only if the domain is notaxisymmetric. We give quantitative, explicit estimates on how thedeparture from axisymmetry affects the constants; a Monge–Kantorovichminimization problem naturally arises in this process. Variants in the axisymmetric case are briefly discussed.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

P.G. Ciarlet, Mathematical elasticity. Vol. I. Three-dimensional elasticity. Vol. II: Theory of plates. Vol. III: Theory of shells. North-Holland Publishing Co., Amsterdam (1988, 1997, 2000).
Cioranescu, D., Oleinik, O.A. and Tronel, G., Korn's, On inequalities for frame type structures and junctions. C. R. Acad. Sci. Paris Sér. I Math. 309 (1989) 591-596.
Desvillettes, L., Convergence to equilibrium in large time for Boltzmann and BGK equations. Arch. Rational Mech. Anal. 110 (1990) 73-91. CrossRef
L. Desvillettes and C. Villani, On the trend to global equilibrium in spatially inhomogeneous entropy-dissipating systems: The Boltzmann equation. Work in progress.
G. Duvaut and J.-L. Lions, Inequalities in mechanics and physics. Springer-Verlag, Berlin (1976). Translated from the French by C.W. John, Grundlehren der Mathematischen Wissenschaften, 219.
Friedrichs, K.O., On the boundary-value problems of the theory of elasticity and Korn's inequality. Ann. Math. 48 (1947) 441-471. CrossRef
S. Gallot, D. Hulin and J. Lafontaine, Riemannian geometry, Second Edition. Springer-Verlag, Berlin (1990).
Gobert, J., Une inégalité fondamentale de la théorie de l'élasticité. Bull. Soc. Roy. Sci. Liège 31 (1962) 182-191.
Grad, H., Boltzmann's, On H-theorem. J. Soc. Indust. Appl. Math. 13 (1965) 259-277. CrossRef
Horgan, C.O., Korn's inequalities and their applications in continuum mechanics. SIAM Rev. 37 (1995) 491-511. CrossRef
Horgan, C.O. and Payne, L.E., On inequalities of Korn, Friedrichs and Babuska-Aziz. Arch. Rational Mech. Anal. 82 (1983) 165-179. CrossRef
Kohn, R.V., New integral estimates for deformations in terms of their nonlinear strains. Arch. Rational Mech. Anal. 78 (1982) 131-172. CrossRef
Korn, A., Solution générale du problème d'équilibre dans la théorie de l'élasticité, dans le cas où les effets sont donnés à la surface. Ann. Fac. Sci. Univ. Toulouse 10 (1908) 165-269. CrossRef
Nitsche, J.A., Korn's, On second inequality. RAIRO: Anal. Numér. 15 (1981) 237-248.
Kondratiev, V.A. and Oleinik, O.A., Korn's, On inequalities. C. R. Acad. Sci. Paris Sér. I Math. 308 (1989) 483-487.
Ryzhak, E.I., Korn's constant for a parallelepiped with a free face or pair of faces. Math. Mech. Solids 4 (1999) 35-55. CrossRef
C. Villani, Topics in mass transportation. Preprint (2002).
Shizuta, Y. and Asano, K., Global solutions of the Boltzmann equation in a bounded convex domain. Proc. Japan Acad. Ser. A Math. Sci. 53 (1977) 3-5. CrossRef