We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
for some constants λ1 andλ2, that could possibly be zero. We compute in particularthe second order derivative of the functional and use it to exclude smooth points ofpositive curvature for the problem with volume constraint. The problem with perimeterconstraint behaves differently since polygons are never minimizers. Finally using a purelygeometrical argument from Tilli [J. Convex Anal. 17 (2010)583–595] we can prove that any arbitrary convex set can be a minimizer when both perimeterand volume constraints are considered.
Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
References
[1]
Ambrosio, L. and Mantegazza, C., Curvature and distance
function from a manifold. J. Geom.
Anal.8 (1998) 723–748.
Dedicated to the memory of Fred Almgren. Google Scholar
[2]
Ambrosio, L. and
Tortorelli, V.M., Approximation of functionals
depending on jumps by elliptic functionals viaΓ-convergence. Comm. Pure Appl.
Math.43 (1990)
999–1036. Google Scholar
[3]
D. Bucur, I. Fragalà and J. Lamboley, Optimal
convex shapes for concave functionals. ESAIM : COCV (in press).
[4]
Buttazzo, G. and Guasoni, P., Shape optimization problems
over classes of convex domains. J. Convex
Anal.4 (1997) 343–351.
Google Scholar
[5]
Buttazzo, G. and Santambrogio, F., Asymptotical compliance
optimization for connected networks. Netw. Heterog.
Media2 (2007) 761–777
(electronic). Google Scholar
[6]
Buttazzo, G. and Stepanov, E., Optimal transportation
networks as free Dirichlet regions for the Monge-Kantorovich problem.
Ann. Scuola Norm. Super. Pisa Cl. Sci.2 (2003) 631–678.
Google Scholar
[7]
G. Buttazzo, E. Oudet and E. Stepanov, Optimal
transportation problems with free Dirichlet regions, in Variational methods for
discontinuous structures, Progr. Nonlinear Differential Equations
Appl.51. Birkhäuser, Basel (2002) 41–65.
[8]
G. Buttazzo, A. Pratelli, S. Solimini and E.
Stepanov, Optimal urban networks via mass transportation, Lecture
Notes in Mathematics1961. Springer-Verlag, Berlin (2009).
[9]
Buttazzo, G., Mainini, E. and Stepanov, E., Stationary configurations for
the average distance functional and related problems.
Control Cybernet.38 (2009)
1107–1130. Google Scholar
[10]
M.C. Delfour and J.-P. Zolésio, Shape analysis
via distance functions : local theory, in Boundaries,
interfaces, and transitions (Banff, AB, 1995), CRM Proc. Lect.
Notes13. Amer. Math. Soc. Providence, RI (1998) 91–123.
H. Federer, Geometric measure theory, Die
Grundlehren der mathematischen Wissenschaften, Band153. Springer-Verlag New York Inc., New York (1969).
[13]
A. Henrot and M. Pierre, Variation et
optimisation de formes, Mathématiques & Applications (Berlin)
[Mathematics & Applications]48. Springer, Berlin (2005). Une analyse géométrique [a geometric analysis].
[14]
Lemenant, A., About the regularity of
average distance minimizers in R2. J. Convex
Anal.18 (2011)
949–981. Google Scholar
[15]
A. Lemenant, A presentation of the average
distance minimizing problem. Zap. Nauchn. Sem. S.-Petersburg.Otdel. Mat. Inst. Steklov. (POMI) 390
(2010) 117–146 (Proceedings of St. Petersburg Seminar, available online
at http://www.pdmi.ras.ru/znsl/2011/v390/abs117.html).
[16]
Mantegazza, C. and
Mennucci, A., Hamilton-jacobi equations and
distance functions on riemannian manifolds. Appl. Math.
Optim.47 (2003) 1–25.
Google Scholar
[17]
Modica, L. and Mortola, S., Il limite nella
Γ-convergenza di una famiglia di funzionali
ellittici. Boll. Un. Mat. Ital. A14 (1977)
526–529. Google Scholar
[18]
Paolini, E. and Stepanov, E., Qualitative properties of
maximum distance minimizers and average distance minimizers in
Rn. J. Math. Sci. (N.
Y.)122 (2004)
3290–3309. Problems in mathematical
analysis. Google Scholar
[19]
Santambrogio, F. and
Tilli, P., Blow-up of optimal sets in the
irrigation problem. J. Geom. Anal.15 (2005)
343–362. Google Scholar
[20]
L. Simon, Lectures on geometric
measure theory, Proceedings of the Centre for Mathematical
Analysis3. Australian National University, Australian National University Centre for
Mathematical Analysis, Canberra (1983).
[21]
Stepanov, E., Partial geometric regularity
of some optimal connected transportation networks. J.
Math. Sci. (N.Y.)132 (2006)
522–552. Problems in mathematical
analysis. Google Scholar
[22]
Tilli, P., Some explicit examples of
minimizers for the irrigation problem. J. Convex
Anal.17 (2010)
583–595. Google Scholar
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Du, Qiang
Lu, Xin Yang
and
Wang, Chong
2022.
The Average Distance Problem with Perimeter-to-Area Ratio Penalization.
SIAM Journal on Mathematical Analysis,
Vol. 54,
Issue. 3,
p.
3122.