Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-10T13:32:39.176Z Has data issue: false hasContentIssue false

On the ersatz material approximation in level-set methods

Published online by Cambridge University Press:  31 July 2009

Marc Dambrine
Affiliation:
Université de Pau et des Pays de l'Adour; CNRS UMR 5142, LMA, France. marc.dambrine@univ-pau.fr
Djalil Kateb
Affiliation:
Université de Technologie de Compiègne; EA 2222, LMAC, France.
Get access

Abstract

The level set method has become widely used in shape optimization where it allows a popular implementation of the steepest descent method. Once coupled with a ersatz material approximation [Allaire et al., J. Comput. Phys.194 (2004) 363–393], a single mesh is only used leading to very efficient and cheap numerical schemes in optimization of structures. However, it has some limitations and cannot be applied in every situation. This work aims at exploring such a limitation. We estimate the systematic error committed by using the ersatz material approximation and, on a model case, explain that they amplifies instabilities by a second order analysis of the objective function.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Afraites, L., Dambrine, M., Eppler, K. and Kateb, K., Detecting perfectly insulated obstacles by shape optimization techniques of order two. Discret. Contin. Dyn. Syst. - série B 8 (2007) 389416.
Afraites, L., Dambrine, M. and Kateb, D., On second order shape optimization methods for electrical impedance tomography. SIAM J. Control Optim. 47 (2008) 15561590. CrossRef
Allaire, G. and Jouve, F., A level-set method for vibration and multiple loads in structural optimization. Comput. Methods Appl. Mech. Engrg. 194 (2005) 32693290. CrossRef
Allaire, G., Jouve, F. and Toader, A.-M., Structural optimization using sensitivity analysis and a level-set method. J. Comput. Phys. 194 (2004) 363393. CrossRef
P. Bernardoni, Outils et méthode de conception de structures mécaniques à déformations et actionnements répartis. Ph.D. Thesis, Université Paris VI, France (2004).
Bucur, D., Do optimal shapes exist? Milan J. Math. 75 (2007) 379398. CrossRef
Cardaliaguet, P. and Some, O. Ley flows in shape optimization. Arch. Ration. Mech. Anal. 183 (2007) 2158. CrossRef
Cardaliaguet, P. and On, O. Ley the energy of a flow arising in shape optimization. Interfaces Free Bound. 10 (2008) 221241.
Dambrine, M., About the variations of the shape Hessian and sufficient conditions of stability for critical shapes. Revista Real Academia Ciencias-RACSAM 96 (2002) 95121.
Dambrine, M. and Pierre, M., About stability of equilibrium shapes. ESAIM: M2AN 34 (2000) 811834. CrossRef
de Gournay, F., Velocity extension for the level-set method and multiple eigenvalues in shape optimization. SIAM J. Control Optim. 45 (2006) 343367. CrossRef
M. Delfour and J.P. Zolesio, Shapes and Geometries: Analysis, Differential Calculus, and Optimization. SIAM (2001).
Descloux, J., Stability of the solutions of the bidimensional magnetic shaping problem in abscence of surface tension. Eur. J. Mech. B Fluid. 10 (1991) 513526.
Eppler, K. and Harbrecht, H., A regularized newton method in electrical impedance tomography using hessian information. Control Cybern. 34 (2005) 203225.
Eppler, K., Harbrecht, H. and Schneider, R., On convergence in elliptic shape optimization. SIAM J. Control Optim. 46 (2007) 6183. CrossRef
A. Henrot and M. Pierre, Variation et optimisation de formes, Mathématiques et Applications 48. Springer (2005).
Hettlich, F. and Rundell, W., A second degree method for nonlinear inverse problems. SIAM J. Numer. Anal. 37 (1999) 587620. CrossRef
V. Isakov, Inverse problems for partial differential equations, Applied Mathematical Sciences 127. Springer (2006).
Kisch, A., The domain derivative and two applications in inverse scattering theory. Inverse Problems 9 (1993) 8196. CrossRef
Osher, S. and Sethian, J.A., Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79 (1988) 1249. CrossRef