Article contents
Periodic stabilization for linear time-periodic ordinary differential equations∗∗∗
Published online by Cambridge University Press: 27 January 2014
Abstract
This paper studies the periodic feedback stabilization of the controlled linear time-periodic ordinary differential equation: ẏ(t) = A(t)y(t) + B(t)u(t), t ≥ 0, where [A(·), B(·)] is a T-periodic pair, i.e., A(·) ∈ L∞(ℝ+; ℝn×n) and B(·) ∈ L∞(ℝ+; ℝn×m) satisfy respectively A(t + T) = A(t) for a.e. t ≥ 0 and B(t + T) = B(t) for a.e. t ≥ 0. Two periodic stablization criteria for a T-period pair [A(·), B(·)] are established. One is an analytic criterion which is related to the transformation over time T associated with A(·); while another is a geometric criterion which is connected with the null-controllable subspace of [A(·), B(·)]. Two kinds of periodic feedback laws for a T-periodically stabilizable pair [ A(·), B(·) ] are constructed. They are accordingly connected with two Cauchy problems of linear ordinary differential equations. Besides, with the aid of the geometric criterion, we find a way to determine, for a given T-periodic A(·), the minimal column number m, as well as a time-invariant n×m matrix B, such that the pair [A(·), B] is T-periodically stabilizable.
Keywords
- Type
- Research Article
- Information
- ESAIM: Control, Optimisation and Calculus of Variations , Volume 20 , Issue 1 , January 2014 , pp. 269 - 314
- Copyright
- © EDP Sciences, SMAI, 2014
References
- 4
- Cited by