Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-13T03:48:54.814Z Has data issue: false hasContentIssue false

A positive solution for an asymptotically linear elliptic problem on$\mathbb{R}^N$ autonomous at infinity

Published online by Cambridge University Press:  15 September 2002

Louis Jeanjean
Affiliation:
Équipe de Mathématiques, UMR 6623 du CNRS, Université de Franche-Comté, 16 route de Gray, 25030 Besançon, France; jeanjean@math.univ-fcomte.fr.
Kazunaga Tanaka
Affiliation:
Department of Mathematics, School of Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169, Japan; kazunaga@mn.waseda.ac.jp.
Get access

Abstract

In this paper we establish the existence of a positive solution for an asymptotically linear elliptic problem on $\xR^N$. The main difficulties to overcome are the lack of a priori bounds for Palais–Smale sequences and a lack of compactness as the domain is unbounded. For the first one we make use of techniques introduced by Lions in his work on concentration compactness. For the second we show how the fact that the “Problem at infinity” is autonomous, in contrast to just periodic, can be used in order to regain compactness.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ambrosetti, A. and Rabinowitz, P.H., Dual variational methods in critical point theory and applications. J. Funct. Anal. 14 (1973) 349-381. CrossRef
Berestycki, H. and Lions, P.L., Nonlinear scalar field equations I. Arch. Rational Mech. Anal. 82 (1983) 313-346.
Berestycki, H., Gallouët, T. and Kavian, O., Equations de Champs scalaires euclidiens non linéaires dans le plan. C. R. Acad. Sci. Paris Sér. I Math. 297 (1983) 307-310.
H. Brezis, Analyse fonctionnelle. Masson (1983).
V. Coti Zelati and P.H. Rabinowitz, Homoclinic type solutions for a semilinear elliptic PDE on $\xR^{N}$ . Comm. Pure Appl. Math. XIV (1992) 1217-1269.
I. Ekeland, Convexity methods in Hamiltonian Mechanics. Springer (1990).
Jeanjean, L., On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on $\xR^{N}$ . Proc. Roy. Soc. Edinburgh Sect. A 129 (1999) 787-809. CrossRef
Lions, P.L., The concentration-compactness principle in the calculus of variations. The locally compact case. Parts I and II. Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984) 109-145 and 223-283. CrossRef
Rabinowitz, P.H., On a class of nonlinear Shrödinger equations. ZAMP 43 (1992) 270-291. CrossRef
Stuart, C.A., Bifurcation in $L^{p}(\xR^{N})$ for a semilinear elliptic equation. Proc. London Math. Soc. 57 (1988) 511-541. CrossRef
Stuart, C.A. and Zhou, H.S., A variational problem related to self-trapping of an electromagnetic field. Math. Meth. Appl. Sci. 19 (1996) 1397-1407. 3.0.CO;2-B>CrossRef
Stuart, C.A. and Zhou, H.S., Applying the mountain-pass theorem to an asymtotically linear elliptic equation on $\xR^{N}$ . Comm. Partial Differential Equations 24 (1999) 1731-1758. CrossRef
Szulkin, A. and Zou, W., Homoclinic orbits for asymptotically linear Hamiltonian systems. J. Funct. Anal. 187 (2001) 25-41. CrossRef