Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T21:21:58.782Z Has data issue: false hasContentIssue false

Semicontinuity theorem in the micropolar elasticity

Published online by Cambridge University Press:  10 February 2009

Josip Tambača
Affiliation:
Department of Mathematics, University of Zagreb, Bijenička 30, 10000 Zagreb, Croatia. tambaca@math.hr; ivelcic@math.hr
Igor Velčić
Affiliation:
Department of Mathematics, University of Zagreb, Bijenička 30, 10000 Zagreb, Croatia. tambaca@math.hr; ivelcic@math.hr
Get access

Abstract

In this paper we investigate the equivalence of the sequentialweak lower semicontinuity of the total energy functional and the quasiconvexity of thestored energy function of the nonlinear micropolar elasticity. Based on techniques of Acerbi and Fusco [Arch. Rational Mech. Anal.86 (1984) 125–145] we extend the result from Tambača and Velčić [ESAIM: COCV (2008) DOI: 10.1051/cocv:2008065] for energies thatsatisfy the growth of order p 1. This result is the mainstep towards the general existence theorem for the nonlinear micropolarelasticity.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acerbi, E. and Fusco, N., Semicontinuity problems in the calculus of variations. Arch. Rational Mech. Anal. 86 (1984) 125145. CrossRef
Aganović, I., Tambača, J. and Tutek, Z., Derivation and justification of the models of rods and plates from linearized three-dimensional micropolar elasticity. J. Elasticity 84 (2006) 131152. CrossRef
J.M. Ball, Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rational Mech. Anal. 63 (1976/1977) 337–403.
P.G. Ciarlet, Mathematical elasticity, Volume I: Three-dimensional elasticity. North-Holland Publishing Co., Amsterdam (1988).
E. Cosserat and F. Cosserat, Théorie des corps déformables. Librairie Scientifique A. Hermann et Fils (Translation: Theory of deformable bodies, NASA TT F-11 561, 1968), Paris (1909).
B. Dacorogna, Direct methods in the calculus of variations. Second Edition, Springer (2008).
A.C. Eringen, Microcontinuum Field Theories, Volume 1: Foundations and Solids. Springer-Verlag, New York (1999).
Hlaváček, I. and Hlaváček, M., On the existence and uniqueness of solution and some variational principles in linear theories of elasticity with couple-stresses. I. Cosserat continuum. Appl. Mat. 14 (1969) 387410.
J. Jeong and P. Neff, Existence, uniqueness and stability in linear Cosserat elasticity for weakest curvature conditions. Math. Mech. Solids (2008) DOI: 10.1177/1081286508093581.
J. Jeong, H. Ramezani, I. Münch and P. Neff, Simulation of linear isotropic Cosserat elasticity with conformally invariant curvature. ZAMM Z. Angew. Math. Mech. (submitted).
P.M. Mariano and G. Modica, Ground states in complex bodies. ESAIM: COCV (2008) DOI: 10.1051/cocv:2008036.
Meyers, N.G., Quasi-convexity and lower semi-continuity of multiple variational integrals of any order. Trans. Amer. Math. Soc. 119 (1965) 125149. CrossRef
Neff, P., Korn's, On first inequality with nonconstant coefficients. Proc. R. Soc. Edinb. Sect. A 132 (2002) 221243. CrossRef
Neff, P., Existence of minimizers for a geometrically exact Cosserat solid. Proc. Appl. Math. Mech. 4 (2004) 548549. CrossRef
Neff, P., A geometrically exact Cosserat-shell model including size effects, avoiding degeneracy in the thin shell limit. Part I: Formal dimensional reduction for elastic plates and existence of minimizers for positive Cosserat couple modulus. Cont. Mech. Thermodynamics 16 (2004) 577628. CrossRef
Neff, P., The Cosserat couple modulus for continuous solids is zero viz the linearized Cauchy- stress tensor is symmetric. ZAMM Z. Angew. Math. Mech. 86 (2006) 892912. CrossRef
Neff, P., Existence of minimizers for a finite-strain micromorphic elastic solid. Proc. Roy. Soc. Edinb. A 136 (2006) 9971012. CrossRef
Neff, P., A finite-strain elastic-plastic Cosserat theory for polycrystals with grain rotations. Int. J. Eng. Sci. 44 (2006) 574594. CrossRef
Neff, P., A geometrically exact planar Cosserat shell-model with microstructure. Existence of minimizers for zero Cosserat couple modulus. Math. Meth. Appl. Sci. 17 (2007) 363392. CrossRef
Neff, P. and Chelminski, K., A geometrically exact Cosserat shell-model for defective elastic crystals. Justification via Γ-convergence. Interfaces and Free Boundaries 9 (2007) 455492. CrossRef
Neff, P. and Forest, S., A geometrically exact micromorphic model for elastic metallic foams accounting for affine microstructure. Modelling, existence of minimizers, identification of moduli and computational results. J. Elasticity 87 (2007) 239276. CrossRef
P. Neff and J. Jeong, A new paradigm: the linear isotropic Cosserat model with conformally invariant curvature. ZAMM Z. Angew. Math. Mech. (submitted).
Neff, P. and Münch, I., Curl bounds Grad on SO(3). ESAIM: COCV 14 (2008) 148159. CrossRef
Pompe, W., Korn's first inequality with variable coefficients and its generalizations. Commentat. Math. Univ. Carolinae 44 (2003) 5770.
Tambača, J. and Velčić, I., Derivation of a model of nonlinear micropolar plate. Ann. Univ. Ferrara Sez. VII Sci. Mat. 54 (2008) 319333. CrossRef
J. Tambača and I. Velčić, Existence theorem for nonlinear micropolar elasticity. ESAIM: COCV (2008) DOI: 10.1051/cocv:2008065.