Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-13T03:58:26.279Z Has data issue: false hasContentIssue false

A sensitivity-based extrapolation techniquefor the numerical solution of state-constrained optimal control problems

Published online by Cambridge University Press:  02 July 2009

Michael Hintermüller
Affiliation:
Department of Mathematics Humboldt-University of Berlin, Unter den Linden 6, 10099 Berlin, Germany. hint@math.hu-berlin.de Institute of Mathematics and Scientific Computing, University of Graz, 8010 Graz, Austria.
Irwin Yousept
Affiliation:
Institut für Mathematik, Technische Universität Berlin, Str. des 17. Juni 136, 10623 Berlin, Germany. yousept@math.tu-berlin.de
Get access

Abstract

Sensitivity analysis (with respect to the regularization parameter)of the solution of a class of regularized state constrainedoptimal control problems is performed. The theoretical results arethen used to establish an extrapolation-based numerical scheme forsolving the regularized problem for vanishing regularizationparameter. In this context, the extrapolation technique providesexcellent initializations along the sequence of reducingregularization parameters. Finally, the favorable numericalbehavior of the new method is demonstrated and a comparison toclassical continuation methods is provided.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

J.-J. Alibert and J.-P. Raymond, Boundary control of semilinear elliptic equations with discontinuous leading coefficients and unbounded controls. Numer. Funct. Anal. Optim. 3/4 (1997) 235–250.
Casas, E., Control of an elliptic problem with pointwise state contraints. SIAM J. Contr. Opt. 4 (1986) 13091322. CrossRef
P. Deuflhard, Newton Methods for Nonlinear Problems. Affine Invariance and Adaptive Algorithms, Springer Series in Computational Mathematics 35. Springer-Verlag, Berlin (2004).
Hintermüller, M., Mesh-independence and fast local convergence of a primal-dual activ e–set method for mixed control-state constrained elliptic control problems. ANZIAM Journal 49 (2007) 138. CrossRef
Hintermüller, M., Ito, K. and Kunisch, K., The primal-dual active set strategy as a semismooth Newton method. SIAM J. Optim. 13 (2003) 865888. CrossRef
Hintermüller, M. and Kunisch, K., Feasible and non-interior path-following in constrained minimization with low multiplier regularity. SIAM J. Control Optim. 45 (2006) 11981221. CrossRef
Hintermüller, M. and Kunisch, K., Path-following methods for a class of constrained minimization problems in function space. SIAM J. Optim. 17 (2006) 159187. CrossRef
Hintermüller, M., Tröltzsch, F. and Yousept, I., Mesh-independence of semismooth Newton methods for Lavrentiev-regularized state constrained nonlinear optimal control problems. Numer. Math. 108 (2008) 571603. CrossRef
M. Hinze and C. Meyer, Variational discretization of Lavrentiev-regularized state constrained elliptic optimal control problems. Computat. Optim. Appl. (2009), doi: 10.1007/s10589-008-9198-1.
Meyer, C., Rösch, A. and Tröltzsch, F., Optimal control of PDEs with regularized pointwise state constraints. Comp. Optim. Appl. 33 (2006) 209228. CrossRef
Meyer, C., Prüfert, U. and Tröltzsch, F., On two numerical methods for stat e–constrained elliptic control problems. Optim. Method. Softw. 22 (2007) 871899. CrossRef
F. Tröltzsch, Regular Lagrange multipliers for control problems with mixed pointwise control-state constraints. SIAM J. Optim. 15 (2004/2005) 616–634 (electronic).
Tröltzsch, F. and Yousept, I., A regularization method for the numerical solution of elliptic boundary control problems with pointwise state constraints. Comp. Optim. Control 42 (2009) 4363. CrossRef
I. Yousept, Vergleich von Lösungsverfahren zur Behandlung elliptischer Optimalsteuerungsprobleme. Master's thesis, TU-Berlin, Germany (2005).