Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-10T22:25:34.076Z Has data issue: false hasContentIssue false

About asymptotic approximations in thin waveguides

Published online by Cambridge University Press:  15 November 2005

Nicole Turbe
Affiliation:
Laboratoire de Modélisation, Matériaux et Structures. UPMC, Case 161, 4, place Jussieu, 75005 Paris, France. turbe@ccr.jussieu.fr
Louis Ratier
Affiliation:
Invited research engineer (currently at EDF/R&D/AMA) LM2S, Case 161, 4, place Jussieu, 75005 Paris, France. louis@ratier.net
Get access

Abstract

We study the propagation of electromagnetic waves in a guide the section of which is a thin annulus. Owing to the presence of a small parameter, explicit approximations of the TM and TE eigenmodes are obtained. The cases of smooth and non smooth boundaries are presented.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

R. Dautray and J.L. Lions, Analyse mathématique et calcul numérique pour les sciences et les techniques. Masson, Paris (1988).
Joly, P. and Poirier, C., Mathematical analysis of electromagnetic open waveguides. RAIRO Modél. Math. Anal. Numér. 29 (1995) 505575. CrossRef
W. Magnus and S. Winkler, Hill's Equation. Interscience, New York (1966).
E. Sanchez-Palencia, Non-Homogeneous Media and Vibration Theory. Springer, Berlin (1980).
J. Sanchez-Hubert and E. Sanchez-Palencia, Vibrations and coupling of continuous systems. Asymptotic methods. Springer, Berlin (1989).