Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-26T03:10:27.055Z Has data issue: false hasContentIssue false

Analysis of total variation flow and its finite element approximations

Published online by Cambridge University Press:  15 April 2004

Xiaobing Feng
Affiliation:
Department of Mathematics, The University of Tennessee, Knoxville, 37996 Tennessee, U.S.A. xfeng@math.utk.edu.
Andreas Prohl
Affiliation:
Department of Mathematics, ETHZ, 8092 Zürich, Switzerland. apr@math.ethz.ch.
Get access

Abstract

We study the gradient flow for the total variation functional, which arises in image processing and geometric applications. We propose a variational inequality weak formulation for the gradient flow,and establish well-posedness of the problem by the energy method. The main idea of our approach is to exploit the relationship betweenthe regularized gradient flow (characterized by a small positive parameterε, see (1.7)) and the minimal surface flow [21]and the prescribed mean curvature flow [16].Since our approach is constructive and variational, finite element methods can be naturally applied to approximate weak solutions of the limiting gradient flow problem. We propose a fully discrete finite element method and establish convergence tothe regularized gradient flow problem as h,k → 0, and to the total variation gradient flow problem as h,k,ε → 0in general cases.Provided that the regularized gradient flow problem possessesstrong solutions, which is proved possible if the datum functionsare regular enough, we establish practical a priori error estimates for the fully discrete finite element solution, in particular, by focusing on the dependence of the error bounds on the regularization parameter ε. Optimal order error bounds are derived for the numerical solution under the meshrelation k = O(h2). In particular, it is shown thatall error bounds depend on $\frac{1}{\varepsilon}$ onlyin some lower polynomial order for small ε.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

L. Ambrosio, N. Fusco and D. Pallara, Functions of bounded variation and free discontinuity problems. The Clarendon Press Oxford University Press, New York (2000).
Andreu, F., Ballester, C., Caselles, V. and Mazón, J.M., The Dirichlet problem for the total variation flow. J. Funct. Anal. 180 (2001) 347403. CrossRef
Andreu, F., Ballester, C., Caselles, V. and Mazón, J.M., Minimizing total variation flow. Differential Integral Equations 14 (2001) 321360.
Andreu, F., Caselles, V., Díaz, J.I. and Mazón, J.M., Some qualitative properties for the total variation flow. J. Funct. Anal. 188 (2002) 516547. CrossRef
G. Bellettini and V. Caselles, The total variation flow in R N. J. Differential Equations (accepted).
S.C. Brenner and L.R. Scott, The mathematical theory of finite element methods. Springer-Verlag, New York, 2nd ed. (2002).
H. Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland Publishing Co., Amsterdam, North-Holland Math. Stud., No. 5. Notas de Matemática (50) (1973).
Casas, E., Kunisch, K. and Regularization, C. Pola by functions of bounded variation and applications to image enhancement. Appl. Math. Optim. 40 (1999) 229257. CrossRef
Chambolle, A. and Lions, P.-L., Image recovery via total variation minimization and related problems. Numer. Math. 76 (1997) 167188. CrossRef
T. Chan and J. Shen, On the role of the BV image model in image restoration. Tech. Report CAM 02-14, Department of Mathematics, UCLA (2002).
Chan, T.F., Golub, G.H. and Mulet, P., A nonlinear primal-dual method for total variation-based image restoration. SIAM J. Sci. Comput. 20 (1999) 19641977 (electronic). CrossRef
P.G. Ciarlet, The finite element method for elliptic problems. North-Holland Publishing Co., Amsterdam, Stud. Math. Appl. 4 (1978).
Crandall, M.G. and Liggett, T.M., Generation of semi-groups of nonlinear transformations on general Banach spaces. Amer. J. Math. 93 (1971) 265298. CrossRef
Dobson, D.C. and Vogel, C.R., Convergence of an iterative method for total variation denoising. SIAM J. Numer. Anal. 34 (1997) 17791791. CrossRef
Gerhardt, C., Boundary value problems for surfaces of prescribed mean curvature. J. Math. Pures Appl. 58 (1979) 75109.
Gerhardt, C., Evolutionary surfaces of prescribed mean curvature. J. Differential Equations 36 (1980) 139172. CrossRef
D. Gilbarg and N.S. Trudinger, Elliptic partial differential equations of second order. Springer-Verlag, Berlin (2001). Reprint of the 1998 ed.
E. Giusti, Minimal surfaces and functions of bounded variation. Birkhäuser Verlag, Basel (1984).
Hardt, R. and Zhou, X., An evolution problem for linear growth functionals. Comm. Partial Differential Equations 19 (1994) 18791907. CrossRef
Johnson, C. and Thomée, V., Error estimates for a finite element approximation of a minimal surface. Math. Comp. 29 (1975) 343349. CrossRef
Lichnewsky, A. and Temam, R., Pseudosolutions of the time-dependent minimal surface problem. J. Differential Equations 30 (1978) 340364. CrossRef
J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod (1969).
Rannacher, R., Some asymptotic error estimates for finite element approximation of minimal surfaces. RAIRO Anal. Numér. 11 (1977) 181196. CrossRef
Rudin, L., Osher, S. and Fatemi, E., Nonlinear total variation based noise removal algorithms. Phys. D 60 (1992) 259268. CrossRef
Simon, J., Compact sets in the space Lp(0,T;B). Ann. Mat. Pura Appl. 146 (1987) 6596. CrossRef
M. Struwe, Applications to nonlinear partial differential equations and Hamiltonian systems, in Variational methods. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics (Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics), Vol. 34. Springer-Verlag, Berlin, 3rd ed. (2000).