Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-14T20:51:40.286Z Has data issue: false hasContentIssue false

Automatic Differentiation Platform: Design

Published online by Cambridge University Press:  15 October 2002

Christèle Faure*
Affiliation:
PolySpace Technologies, 28 rue Estienne d'Orves, 92120 Montrouge, France. Christele.Faure@polyspace.com.
Get access

Abstract

Automatic differentiation (AD) has proven its interest in many fields ofapplied mathematics, but it is still not widely used. Furthermore, existingnumerical methods have been developed under the hypotheses that computingprogram derivatives is not affordable for real size problems. Exact derivativeshave therefore been avoided, or replaced by approximations computed by divideddifferences. The hypotheses is no longer true due to the maturity of AD addedto the quick evolution of machine capacity. This encourages the development ofnew numerical methods that freely make use of program derivatives, and willrequire the definition and development of new AD strategies. AD tools mustbe extended to produce these new derivative programs, in such a modular waythat the different sub-problems can be solved independently from one another.Flexibility assures the user to be able to generate whatever specificderivative program he needs, with at the same time the possibility to generatestandard ones. This paper sketches a new model of modular, extensible andflexible AD tool that will increase tenfold the DA potential for appliedmathematics. In this model, the AD tool consists of an AD kernel namedKAD supported by a general program transformation platform.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

M. Berz, C.H. Bischof, G.F. Corliss and A. Griewank, Computational Differentiation: Applications, Techniques, and Tools. SIAM, Philadelphia (1996).
C. Bischof, A. Carle, P. Khademi, A. Mauer and P. Hovland, Adifor 2.0 User's Guide, Technical Report ANL/MCS-TM-192/CRPC-TR95516-S. Argonne National Laboratory Technical Memorandum and CRPC Technical Report (1998).
G. Corliss, C. Faure, A. Griewank, L. Hascoet and U. Naumann, Automatic Differentiation: From Simulation to Optimization. Springer-Verlag (2001).
Faure, C., Adjoining strategies for multi-layered programs. Optim. Methods Softw. 17 (2002) 129-164. CrossRef
C. Faure and U. Naumann, Minimizing the Tape Size, in Automatic Differentiation: From Simulation to Optimization, G. Corliss, C. Faure, A. Griewank, L. Hascoët and U. Naumann Eds. Springer-Verlag (2001).
C. Faure and Y. Papegay, Odyssée User's Guide, Version 1.7. Rapport technique 0224. INRIA (1998).
R. Giering, Tangent linear and Adjoint Model Compiler, Users manual (1997). Unpublished, available from http://puddle.mit.edu/~ralf/tamc
R. Giering and T. Kaminski, Generating recomputations in reverse mode, in Automatic Differentiation of Algorithms: From Simulation to Optimization. Springer-Verlag (2001).
A. Griewank, Principles and Techniques of Algorithmic Differentiation. SIAM (2000).
A. Griewank and G.F. Corliss, Automatic Differentiation of Algorithms: Theory, Implementation, and Applications. SIAM, Philadelphia (1991).
Stanford Compiler Group, Suif Compiler System, Technical report. Stanford University.
Iri, M., Simultaneous computation of functions, partial derivatives and estimates of rounding errors, complexity and practicality. Japan J. Appl. Math. 1 (1984) 223-252. CrossRef
M. Iri and K. Kubota, Methods of fast automatic differentiation and applications, Research memorandum rmi 87-02, Department of Mathematical Engineering and Instrumentation Physics. Faculty of Engineering, University of Tokyo (1987).
J. Joss, Algorithmisches Differenzieren. Ph.D. Thesis, ETH Zurich (1976).
Kim, K.V., Nesterov, Yu.E. and Cherkasskii, B.V., An estimate of the effort in computing the gradient. Soviet Math. Dokl. 29 (1984) 384-387.
Ostrovskii, G.M., Volin, Yu.M. and Borisov, W.W., Uber die berechnung von ableitungen. Wiss. Z. Tech. Hochsch. Chimie 13 (1971) 382-384.
Sawyer, J.W., First partial differentiation by computer with an application to categorial data analysis. Amer. Statist. 38 (1984) 300-308.
B. Speelpening, Compiling fast partial derivatives of functions given by algorithms. Ph.D. Thesis, University of Illinois, Urbana-Champaign (1980).