Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T23:04:38.142Z Has data issue: false hasContentIssue false

Boundary control and shape optimization for the robust designof bypass anastomoses under uncertainty

Published online by Cambridge University Press:  17 June 2013

Toni Lassila
Affiliation:
Modelling and Scientific Computing, Mathematics Institute of Computational Science and Engineering, École Polytechnique Fédérale de Lausanne, Station 8, EPFL, 1015 Lausanne, Switzerland.. toni.lassila@epfl.ch; alfio.quarteroni@epfl.ch
Andrea Manzoni
Affiliation:
Now at SISSA MathLab, International School for Advanced Studies, Via Bonomea 265, 34136 Trieste, Italy.; andrea.manzoni@sissa.it; gianluigi.rozza@sissa.it
Alfio Quarteroni
Affiliation:
Modelling and Scientific Computing, Mathematics Institute of Computational Science and Engineering, École Polytechnique Fédérale de Lausanne, Station 8, EPFL, 1015 Lausanne, Switzerland.. toni.lassila@epfl.ch; alfio.quarteroni@epfl.ch MOX, Modellistica e Calcolo Scientifico, Dipartimento di Matematica F. Brioschi, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy.; alfio.quarteroni@polimi.it
Gianluigi Rozza
Affiliation:
Now at SISSA MathLab, International School for Advanced Studies, Via Bonomea 265, 34136 Trieste, Italy.; andrea.manzoni@sissa.it; gianluigi.rozza@sissa.it
Get access

Abstract

We review the optimal design of an arterial bypass graft following either a (i) boundaryoptimal control approach, or a (ii) shape optimization formulation. The main focus isquantifying and treating the uncertainty in the residual flow when the hosting artery isnot completely occluded, for which the worst-case in terms of recirculation effects isinferred to correspond to a strong orifice flow through near-complete occlusion.Aworst-case optimal control approach is applied to the steady Navier-Stokes equations in 2Dto identify an anastomosis angle and a cuffed shape that are robust with respect to apossible range of residual flows. We also consider a reduced order modelling frameworkbased on reduced basis methods in order to make the robust design problem computationallyfeasible. The results obtained in 2D are compared with simulations in a 3D geometry butwithout model reduction or the robust framework.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agoshkov, V., Quarteroni, A. and Rozza, G., A mathematical approach in the design of arterial bypass using unsteady Stokes equations. J. Sci. Comput. 28 (2006) 139165. Google Scholar
Agoshkov, V., Quarteroni, A. and Rozza, G., Shape design in aorto-coronaric bypass anastomoses using perturbation theory. SIAM J. Numer. Anal. 44 (2006) 367384. Google Scholar
G. Allaire, Conception optimale de structures, vol. 58. Springer Verlag (2007).
Amsallem, D., Cortial, J., Carlberg, K. and Farhat, C., A method for interpolating on manifolds structural dynamics reduced-order models. Int. J. Numer. Methods Eng. 80 (2009) 12411258. Google Scholar
Antil, H., Heinkenschloss, M., Hoppe, R.H.W. and Sorensen, D.C., Domain decomposition and model reduction for the numerical solution of PDE constrained optimization problems with localized optimization variables. Comput. Vis. Sci. 13 (2010) 249264. Google Scholar
Berggren, M., Numerical solution of a flow-control problem: Vorticity reduction by dynamic boundary action. SIAM J. Sci. Comput. 19 (1998) 829. Google Scholar
Bergmann, M. and Cordier, L., Optimal control of the cylinder wake in the laminar regime by trust-region methods and POD reduced-order models. J. Comput. Phys. 227 (2008) 78137840. Google Scholar
R.P. Brent, Algorithms for Minimization Without Derivatives. Prentice-Hall, Englewood Cliffs, N.J. (1973).
Burman, E. and Fernández, M.A., Continuous interior penalty finite element method for the time-dependent Navier–Stokes equations: space discretization and convergence. Numer. Math. 107 (2007) 3977. Google Scholar
Carlberg, K. and Farhat, C., A low-cost, goal-oriented compact proper orthogonal decomposition basis for model reduction of static systems. Int. J. Numer. Methods Eng. 86 (2011) 381402. Google Scholar
Coleman, T. F. and Li, Y., An interior trust region approach for nonlinear minimization subject to bounds. SIAM J. Optim. 6 (1996) 418445. Google Scholar
Dedè, L., Optimal flow control for Navier–Stokes equations: drag minimization. Int. J. Numer. Methods Fluids 55 (2007) 347366. Google Scholar
S. Dempe, Foundations of bilevel programming. Kluwer Academic Publishers, Dordrecht, The Netherlands (2002).
Deparis, S., Reduced basis error bound computation of parameter-dependent Navier-Stokes equations by the natural norm approach. SIAM J. Numer. Anal. 46 (2008) 20392067. Google Scholar
Deparis, S. and Rozza, G., Reduced basis method for multi-parameter-dependent steady Navier-Stokes equations: Applications to natural convection in a cavity. J. Comput. Phys. 228 (2009) 43594378. Google Scholar
Do, H., Owida, A.A., Yang, W. and Morsi, Y.S., Numerical simulation of the haemodynamics in end-to-side anastomoses. Int. J. Numer. Methods Fluids 67 (2011) 638650. Google Scholar
O. Dur, S.T. Coskun, K.O. Coskun, D. Frakes, L.B. Kara and K. Pekkan, Computer-aided patient-specific coronary artery graft design improvements using CFD coupled shape optimizer. Cardiovasc. Eng. Tech. (2011) 1–13.
El Zahab, Z., Divo, E. and Kassab, A., Minimisation of the wall shear stress gradients in bypass grafts anastomoses using meshless CFD and genetic algorithms optimisation. Comput. Methods Biomech. Biomed. Eng. 13 (2010) 3547. Google ScholarPubMed
Ethier, C.R., Prakash, S., Steinman, D.A., Leask, R.L., Couch, G.G. and Ojha, M., Steady flow separation patterns in a 45 degree junction. J. Fluid Mech. 411 (2000) 138. Google Scholar
Ethier, C.R., Steinman, D.A., Zhang, X., Karpik, S.R. and Ojha, M., Flow waveform effects on end-to-side anastomotic flow patterns. J. Biomech. 31 (1998) 609617. Google ScholarPubMed
Giordana, S., Sherwin, S.J., Peiró, J., Doorly, D.J., Crane, J.S., Lee, K.E., Cheshire, N.J.W. and Caro, C.G., Local and global geometric influence on steady flow in distal anastomoses of peripheral bypass grafts. J. Biomech. Eng. 127 (2005) 1087. Google ScholarPubMed
M.D. Gunzburger, Perspectives in Flow Control and Optimization. SIAM (2003).
Gunzburger, M.D., Hou, L. and Svobodny, T.P., Boundary velocity control of incompressible flow with an application to viscous drag reduction. SIAM J. Control Optim. 30 (1992) 167. Google Scholar
Gunzburger, M.D., Kim, H. and Manservisi, S., On a shape control problem for the stationary Navier-Stokes equations. ESAIM: M2AN 34 (2000) 12331258. Google Scholar
Haruguchi, H. and Teraoka, S., Intimal hyperplasia and hemodynamic factors in arterial bypass and arteriovenous grafts: a review. J. Artif. Organs 6 (2003) 227235. Google ScholarPubMed
J. Haslinger and R.A.E. Mäkinen, Introduction to shape optimization: theory, approximation, and computation. SIAM (2003).
Herzog, R. and Schmidt, F., Weak lower semi-continuity of the optimal value function and applications to worst-case robust optimal control problems. Optim. 61 (2012) 685697. Google Scholar
Hintermüller, M., Kunisch, K., Spasov, Y. and Volkwein, S., Dynamical systems-based optimal control of incompressible fluids. Int. J. Numer. Methods Fluids 46 (2004) 345359. Google Scholar
Humphrey, J.D., Review paper: Continuum biomechanics of soft biological tissues. Proc. R. Soc. A 459 (2003) 346. Google Scholar
M. Jiang, R. Machiraju and D. Thompson, Detection and visualization of vortices, in The Visualization Handbook, edited by C.D. Hansen and C.R. Johnson (2005) 295–309.
H. Kasumba and K. Kunisch, Shape design optimization for viscous flows in a channel with a bump and an obstacle, in Proc. 15th Int. Conf. Methods Models Automation Robotics, Miedzyzdroje, Poland (2010) 284–289.
Keynton, R.S., Evancho, M.M., Sims, R.L., Rodway, N.V., Gobin, A. and Rittgers, S.E., Intimal hyperplasia and wall shear in arterial bypass graft distal anastomoses: an in vivo model study. J. Biomech. Eng. 123 (2001) 464. Google Scholar
Ku, D.N., Giddens, D.P., Zarins, C.K. and Glagov, S., Pulsatile flow and atherosclerosis in the human carotid bifurcation. positive correlation between plaque location and low oscillating shear stress. Arterioscler. Thromb. Vasc. Biol. 5 (1985) 293302. Google ScholarPubMed
Kunisch, K. and Vexler, B., Optimal vortex reduction for instationary flows based on translation invariant cost functionals. SIAM J. Control Optim. 46 (2007) 13681397. Google Scholar
T. Lassila, A. Manzoni, A. Quarteroni and G. Rozza, A reduced computational and geometrical framework for inverse problems in haemodynamics (2011). Technical report MATHICSE 12.2011: Available on http://mathicse.epfl.ch/files/content/sites/mathicse/files/Mathicse
Lassila, T. and Rozza, G., Parametric free-form shape design with PDE models and reduced basis method. Comput. Methods Appl. Mechods Eng. 199 (2010) 15831592. Google Scholar
Lei, M., Archie, J. and Kleinstreuer, C., Computational design of a bypass graft that minimizes wall shear stress gradients in the region of the distal anastomosis. J. Vasc. Surg. 25 (1997) 637646. Google ScholarPubMed
Leuprecht, A., Perktold, K., Prosi, M., Berk, T., Trubel, W. and Schima, H., Numerical study of hemodynamics and wall mechanics in distal end-to-side anastomoses of bypass grafts. J. Biomech. 35 (2002) 225236. Google ScholarPubMed
Loth, F., Fischer, P.F. and Bassiouny, H.S.. Blood flow in end-to-side anastomoses. Annu. Rev. Fluid Mech. 40 (200) 367393.
Loth, F., Jones, S.A., Giddens, D.P., Bassiouny, H.S., Glagov, S. and Zarins, C.K.. Measurements of velocity and wall shear stress inside a PTFE vascular graft model under steady flow conditions. J. Biomech. Eng. 119 (1997) 187. Google ScholarPubMed
Loth, F., Jones, S.A., Zarins, C.K., Giddens, D.P., Nassar, R.F., Glagov, S. and Bassiouny, H.S., Relative contribution of wall shear stress and injury in experimental intimal thickening at PTFE end-to-side arterial anastomoses. J. Biomech. Eng. 124 (2002) 44. Google ScholarPubMed
A. Manzoni, Reduced models for optimal control, shape optimization and inverse problems in haemodynamics, Ph.D. thesis, École Polytechnique Fédérale de Lausanne (2012).
Manzoni, A., Quarteroni, A. and Rozza, G., Shape optimization for viscous flows by reduced basis methods and free-form deformation, Internat. J. Numer. Methods Fluids 70 (2012) 646670. Google Scholar
Manzoni, A., Quarteroni, A. and Rozza, G., Model reduction techniques for fast blood flow simulation in parametrized geometries. Int. J. Numer. Methods Biomed. Eng. 28 (2012) 604625. Google ScholarPubMed
Migliavacca, F. and Dubini, G., Computational modeling of vascular anastomoses. Biomech. Model. Mechanobiol. 3 (2005) 235250. Google ScholarPubMed
Oliveira, I.B. and Patera, A.T., Reduced-basis techniques for rapid reliable optimization of systems described by affinely parametrized coercive elliptic partial differential equations. Optim. Eng. 8 (2008) 4365. Google Scholar
A.A. Owida, H. Do and Y.S. Morsi, Numerical analysis of coronary artery bypass grafts: An over view. Comput. Methods Programs Biomed. (2012). DOI: 10.1016/j.cmpb.2011.12.005. CrossRef
Peterson, J.S., The reduced basis method for incompressible viscous flow calculations. SIAM J. Sci. Stat. Comput. 10 (1989) 777786. Google Scholar
Probst, M., Lülfesmann, M., Nicolai, M., Bücker, H.M., Behr, M. and Bischof, C.H.. Sensitivity of optimal shapes of artificial grafts with respect to flow parameters. Comput. Methods Appl. Mech. Eng. 199 (2010) 9971005. Google Scholar
Qiao, A. and Liu, Y., Medical application oriented blood flow simulation. Clinical Biomech. 23 (2008) S130S136. Google ScholarPubMed
Quarteroni, A. and Rozza, G., Optimal control and shape optimization of aorto-coronaric bypass anastomoses. Math. Models Methods Appl. Sci. 13 (2003) 18011823. Google Scholar
Quarteroni, A. and Rozza, G., Numerical solution of parametrized Navier-Stokes equations by reduced basis methods. Numer. Methods Part. Differ. Equ. 23 (2007) 923948. Google Scholar
A. Quarteroni, G. Rozza and A. Manzoni. Certified reduced basis approximation for parametrized partial differential equations in industrial applications. J. Math. Ind. 1 (2011).
Ravindran, S.S., Reduced-order adaptive controllers for fluid flows using POD. J. Sci. Comput. 15 (2000) 457478. Google Scholar
A.M. Robertson, A. Sequeira and M.V. Kameneva, Hemorheology. Hemodynamical Flows (2008) 63–120.
Rozza, G., On optimization, control and shape design of an arterial bypass. Int. J. Numer. Methods Fluids 47 (2005) 14111419. Google Scholar
Rozza, G., Huynh, D.B.P. and Patera, A.T., Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations. Arch. Comput. Methods Eng. 15 (2008) 229275. Google Scholar
Sankaran, S. and Marsden, A.L., The impact of uncertainty on shape optimization of idealized bypass graft models in unsteady flow. Phys. Fluids 22 (2010) 121902. Google Scholar
O. Stein, Bi-level strategies in semi-infinite programming. Kluwer Academic Publishers, Dordrecht, The Netherlands (2003).
R. Temam, Navier-Stokes Equations. AMS Chelsea, Providence, Rhode Island (2001).
Veroy, K. and Patera, A.T., Certified real-time solution of the parametrized steady incompressible Navier-Stokes equations: rigorous reduced-basis a posteriori error bounds. Int. J. Numer. Methods Fluids 47 (2005) 773788. Google Scholar
Weickum, G., Eldred, M.S. and Maute, K., A multi-point reduced-order modeling approach of transient structural dynamics with application to robust design optimization. Struct. Multidisc. Optim. 38 (2009) 599611. Google Scholar
Zeng, D., Ding, Z., Friedman, M.H. and Ethier, C.R., Effects of cardiac motion on right coronary artery hemodynamics. Ann. Biomed. Eng. 31 (2003) 420429. Google ScholarPubMed