Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-10T22:19:06.918Z Has data issue: false hasContentIssue false

A Comparison of Dual Lagrange Multiplier Spaces for Mortar Finite Element Discretizations

Published online by Cambridge University Press:  15 January 2003

Barbara I. Wohlmuth*
Affiliation:
Math. Institut, Universität Stuttgart, Pfaffenwaldring 57, 70 569 Stuttgart, Germany. wohlmuth@mathematik.uni-stuttgart.de.
Get access

Abstract

Domain decomposition techniques provide a powerful tool for the numerical approximation of partial differential equations.We focus on mortar finite element methods on non-matching triangulations.In particular, we discuss and analyze dual Lagrange multiplier spacesfor lowest order finite elements.These non standard Lagrange multiplier spaces yield optimal discretizationschemes and a locally supported basis for the associatedconstrained mortar spaces. As a consequence,standard efficient iterative solvers as multigrid methods or domain decomposition techniques can be easily adapted to the nonconformingsituation.Here, we introduce new dual Lagrange multiplier spaces. We concentrateon the construction of locally supported and continuous dualbasis functions.The optimality of the associated mortar method is shown. Numerical results illustrate the performance of our approach.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bastian, P., Birken, K., Johannsen, K., Lang, S., Neuß, N., Rentz-Reichert, H. and Wieners, C., UG - a flexible software toolbox for solving partial differential equations. Comput. Vis. Sci. 1 (1997) 27-40. CrossRef
Braess, D. and Dahmen, W., Stability estimates of the mortar finite element method for 3-dimensional problems. East-West J. Numer. Math. 6 (1998) 249-263.
Ben Belgacem, F., The mortar finite element method with Lagrange multipliers. Numer. Math. 84 (1999) 173-197. CrossRef
Ben Belgacem, F. and Maday, Y., The mortar element method for three dimensional finite elements. RAIRO Modél. Math. Anal. Numér. 31 (1997) 289-302. CrossRef
C. Bernardi, Y. Maday and A.T. Patera, Domain decomposition by the mortar element method, in: Asymptotic and numerical methods for partial differential equations with critical parameters, H. Kaper et al. Eds., Reidel, Dordrecht (1993) 269-286.
C. Bernardi, Y. Maday and A.T. Patera, A new nonconforming approach to domain decomposition: the mortar element method, in: Nonlinear partial differential equations and their applications, H. Brezzi et al. Eds., Paris (1994) 13-51.
L. Cazabeau, C. Lacour and Y. Maday, Numerical quadratures and mortar methods, in: Computational science for the 21st century. Dedicated to Prof. Roland Glowinski on the occasion of his 60th birthday. Symposium, Tours, France, May 5-7, 1997, John Wiley & Sons Ltd. (1997) 119-128.
Kim, C., Lazarov, R.D., Pasciak, J.E. and Vassilevski, P.S., Multiplier spaces for the mortar finite element method in three dimensions. SIAM J. Numer. Anal. 39 (2001) 519-538. CrossRef
Krause, R.H. and Wohlmuth, B.I., Nonconforming domain decomposition techniques for linear elasticity. East-West J. Numer. Math. 8 (2000) 177-206.
Y. Maday, F. Rapetti and B.I. Wohlmuth, The influence of quadrature formulas in 3d mortar methods. Lect. Notes Comput. Sci. Eng. 22 , Springer-Verlag (2002).
P. Oswald and B. Wohlmuth, On polynomial reproduction of dual FE bases, in: Thirteenth Int. Conf. on Domain Decomposition Methods (2002) 85-96.
Wohlmuth, B.I. and Krause, R.H., Multigrid methods based on the unconstrained product space arising from mortar finite element discretizations. SIAM J. Numer. Anal. 39 (2001) 192-213. CrossRef
Wohlmuth, B.I., A mortar finite element method using dual spaces for the Lagrange multiplier. SIAM J. Numer. Anal. 38 (2000) 989-1012. CrossRef
B.I. Wohlmuth, Discretization methods and iterative solvers based on domain decomposition. Lecture Notes in Comput. Sci. 17 , Springer, Heidelberg (2001).