Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-10T11:47:49.687Z Has data issue: false hasContentIssue false

Multiscale modelling of sound propagation through the lungparenchyma

Published online by Cambridge University Press:  15 November 2013

Paul Cazeaux
Affiliation:
UniversitéPierre et Marie Curie-Paris 6, UMR 7598, Laboratoire J.-L. Lions, 75005 Paris, France Inria Projet REO, Rocquencourt, BP 105, 78153 Le Chesnay Cedex, France. cazeaux@ann.jussieu.fr
Jan S. Hesthaven
Affiliation:
Division of Applied Mathematics, Brown University, 182 George Street, Providence, RI 02912, USA; JanHesthaven@brown.edu
Get access

Abstract

In this paper we develop and study numerically a model to describe some aspects of soundpropagation in the human lung, considered as a deformable and viscoelastic porous medium(the parenchyma) with millions of alveoli filled with air. Transmission of sound throughthe lung above 1 kHz is known to be highly frequency-dependent. We pursue the key ideathat the viscoelastic parenchyma structure is highly heterogeneous on the small scaleε and use two-scale homogenization techniques to derive effectiveacoustic equations for asymptotically small ε. This process turns out tointroduce new memory effects. The effective material parameters are determined from thesolution of frequency-dependent micro-structure cell problems. We propose a numericalapproach to investigate the sound propagation in the homogenized parenchyma using aDiscontinuous Galerkin formulation. Numerical examples are presented.

Type
Research Article
Copyright
© EDP Sciences, SMAI 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allaire, G., Homogenization and two-scale convergence. SIAM J. Math. Anal. 23 (1992) 14821518. Google Scholar
Baffico, L., Grandmont, C., Maday, Y. and Osses, A., Homogenization of elastic media with gaseous inclusions. Multiscale Model. Simul. 7 (2008) 432465. Google Scholar
Baumgaertel, M. and Winter, H.H., Determination of discrete relaxation and retardation time spectra from dynamic mechanical data. Rheologica Acta 28 (1989) 511519. Google Scholar
Blasselle, A. and Griso, G., Mechanical modeling of the skin. Asymptotic Analysis 74 (2011) 167198. Google Scholar
Boyaval, S., Reduced-basis approach for homogenization beyond the periodic setting. Multiscale Model. Simul. 7 (2008) 466494. Google Scholar
R. Burridge and J. Keller, Biot’s poroelasticity equations by homogenization, in Macroscopic Properties of Disordered Media, vol. 154 of Lecture Notes in Physics. Springer (1982) 51–57.
Butler, J.P., Lehr, J.L. and Drazen, J.M., Longitudinal elastic wave propagation in pulmonary parenchyma. J. Appl. Phys. 62 (1987) 13491355. Google ScholarPubMed
J. Clegg and M.P. Robinson, A genetic algorithm used to fit Debye functions to the dielectric properties of tissues. 2010 IEEE Congress on Evolutionary Computation (CEC) (2010) 1–8.
Dunn, F., Attenuation and speed of ultrasound in lung: Dependence upon frequency and inflation. J. Acoust. Soc. Am. 80 (1986) 12481250. Google ScholarPubMed
M. Fabrizio and A. Morro, Mathematical problems in linear viscoelasticity, vol. 12 of SIAM Studies in Applied Mathematics. SIAM, Philadelphia, PA (1992).
Fang, M., Gilbert, R.P. and Xie, X., Deriving the effective ultrasound equations for soft tissue interrogation. Comput. Math. Appl. 49 (2005) 10691080. Google Scholar
Gilbert, R.P. and Mikelić, A., Homogenizing the acoustic properties of the seabed. I. Nonlinear Anal. 40 (2000) 185212. Google Scholar
Grimal, Q., Watzky, A. and Naili, S., A one-dimensional model for the propagation of transient pressure waves through the lung. J. Biomech. 35 (2002) 10811089. Google ScholarPubMed
Hanygan, A., Viscous dissipation and completely monotonic relaxation moduli. Rheologica Acta 44 (2005) 614621. Google Scholar
F. Hecht, FreeFem++ manual (2012).
J.S. Hesthaven and T. Warburton, Nodal discontinuous Galerkin methods, vol. 54 of Texts in Applied Mathematics. Springer, New York (2008).
Kanevsky, A., Carpenter, M.H., Gottlieb, D. and Hesthaven, J.S., Application of implicit-explicit high order Runge-Kutta methods to discontinuous-Galerkin schemes. J. Comput. Phys. 225 (2007) 17531781. Google Scholar
Kelley, D.F., Destan, T.J. and Luebbers, R.J., Debye function expansions of complex permittivity using a hybrid particle swarm-least squares optimization approach. Antennas Propagation IEEE Trans. 55 (2007) 19992005. Google Scholar
Kennedy, C.A. and Carpenter, M.H., Additive Runge-Kutta schemes for convection-diffusion-reaction equations. Appl. Numer. Math. 44 (2003) 139181. Google Scholar
A. Kloeckner, Hedge: Hybrid and Easy Discontinuous Galerkin Environment. http://www.cims.]nyu.edu/˜kloeckner/ (2010).
S.S. Kraman, Speed of low-frequency sound through lungs of normal men. J. Appl. Phys. (1983) 1862–1867.
R.J. LeVeque, Numerical methods for conservation laws. Lectures in Mathematics ETH Zürich. Birkhäuser, Basel (1990).
J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications, vol. 1 of Travaux et Recherches Mathématiques. Dunod, Paris (1968).
M. Lourakis, levmar: Levenberg-Marquardt nonlinear least squares algorithms in C/C++. http://www.ics.forth.gr/˜lourakis/levmar/ (2004).
Y. Maday, N. Morcos and T. Sayah, Reduced basis numerical homogenization for scalar elliptic equations with random coefficients: application to blood micro-circulation. Submitted to SIAM J. Appl Math. (2012).
N. Morcos, Modélisation mathématique et simulation de systèmes microvasculaires. Ph.D. thesis, Université Pierre et Marie Curie (2011).
Nguetseng, G., A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal. 20 (1989) 608623. Google Scholar
Owen, M.R. and Lewis, M.A., The mechanics of lung tissue under high-frequency ventilation. SIAM J. Appl. Math. 61 (2001) 17311761. Google Scholar
Pasterkamp, H., Kraman, S.S. and Wodicka, G.R., Respiratory sounds. advances beyond the stethoscope. Am. J. Respir. Crit. Care Med. 156 (1997) 974. Google ScholarPubMed
Rice, D.A., Sound speed in pulmonary parenchyma. J. Appl. Physiol. 54 (1983) 304308. Google ScholarPubMed
E., Roan and M.W., Waters, What do we know about mechanical strain in lung alveoli? Am. J. Physiol. Lung Cell Mol. Physiol. 301 (2011) 625635. Google Scholar
Rueter, D., Hauber, H.P., Droeman, D., Zabel, P. and Uhlig, S., Low-frequency ultrasound permeates the human thorax and lung: a novel approach to non-invasive monitoring. Ultraschall Med. 31 (2010) 5362. Google ScholarPubMed
E. Sanchez–Palencia, Vibration of mixtures of solids and fluids, in Non-Homogeneous Media and Vibration Theory, vol. 127 of Lecture Notes in Physics. Springer (1980) 158–190.
Schapery, R.A., A simple collocation method for fitting viscoelastic models to experimental data. GALCIT SM 63 (1961) 23. Google Scholar
Siklosi, M., Jensen, O.E., R.H., Tew and A., Logg. Multiscale modeling of the acoustic properties of lung parenchyma. ESAIM: Proc. 23 (2008) 7897. Google Scholar
Sorvari, J. and Hämäläinen, J., Time integration in linear viscoelasticity – a comparative study. Mech. Time-Dependent Mater. 14 (2010) 307328 Google Scholar
Suki, B., Ito, S., Stamenović, D., Lutchen, K.R. and Ingenito, E.P., Biomechanics of the lung parenchyma: critical roles of collagen and mechanical forces. J. Appl. Physiol. 98 (2005) 18921899. Google ScholarPubMed
P. Suquet, Linear problems. In Homogenization Techniques for Composite Media, vol. 272 of Lecture Notes in Physics. Edited by Enrique Sanchez–Palencia and André Zaoui. Springer (1987) 209–230.
L. Tartar, The general theory of homogenization. A personalized introduction, vol. 7 of Lecture Notes of the Unione Matematica Italiana. Springer (2009).
Yi, Y.-M., Park, S.-H. and Youn, S.-K., Asymptotic homogenization of viscoelastic composites with periodic microstructures. Int. J. Solids Struct. 35 (1998) 20392055. Google Scholar