Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-28T05:24:59.287Z Has data issue: false hasContentIssue false

Consistency, accuracy and entropy behaviour of remeshedparticle methods

Published online by Cambridge University Press:  31 July 2012

Lisl Weynans
Affiliation:
Univ. Bordeaux, IMB, UMR 5251, 33400 Talence, France. lisl.weynans@math.u-bordeaux1.fr CNRS, IMB, UMR 5251, 33400 Talence, France INRIA, 33400 Talence, France
Adrien Magni
Affiliation:
Laboratoire Jean Kuntzmann, Université Joseph Fourier, 51 rue des Mathématiques, 38041 Grenoble Cedex 9, France; adrien.magni@imag.fr
Get access

Abstract

In this paper we analyze the consistency, the accuracy and some entropy properties ofparticle methods with remeshing in the case of a scalar one-dimensional conservation law.As in [G.-H. Cottet and L. Weynans, C. R. Acad. Sci. Paris, Ser. I343 (2006) 51–56] we re-write particle methods with remeshing inthe finite-difference formalism. This allows us to prove the consistency of these methods,and accuracy properties related to the accuracy of interpolation kernels. Cottet and Magnidevised recently in [G.-H. Cottet and A. Magni, C. R. Acad. Sci. Paris, Ser. I347 (2009) 1367–1372] and [A. Magni and G.-H. Cottet, J.Comput. Phys. 231 (2012) 152–172] TVD remeshing schemes forparticle methods. We extend these results to the nonlinear case with arbitrary velocitysign. We present numerical results obtained with these new TVD particle methods for theEuler equations in the case of the Sod shock tube. Then we prove that with these new TVDremeshing schemes the particle methods converge toward the entropy solution of the scalarconservation law.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ben Moussa, B. and Vila, J.P., Convergence of SPH methods for scalar nonlinear conservation laws. SIAM J. Numer. Anal. 37 (2000) 863887. Google Scholar
W. Benz, The Numerical Modelling of Nonlinear Stellar Pulsations, Problems and Prospects, a review, in Smooth Particle Hydrodynamics : NATO ASIS Series (1989) 269–287.
C. Berthon, Contribution à l’analyse numérique des équations de Navier-Stokes compressibles à deux entropies spécifiques. Application à la turbulence compressible. Ph.D. thesis, Université Paris VI (1998).
Coquerelle, M. and Cottet, G.-H., A vortex level set method for the two-way coupling of an incompressible fluid with colliding rigid bodies. J. Comput. Phys. 227 (2008) 91219137. Google Scholar
G.-H. Cottet and P.D. Koumoutsakos, Vortex methods. Cambridge University Press (2000).
Cottet, G.-H. and Magni, A., TVD remeshing schemes for particle methods. C. R. Acad. Sci. Paris, Ser. I 347 (2009) 13671372. Google Scholar
Cottet, G.-H. and Weynans, L., Particle methods revisited : a class of high-order finite-difference schemes. C. R. Acad. Sci. Paris, Ser. I 343 (2006) 5156. Google Scholar
Cottet, G.-H., Michaux, B., Ossia, S. and Vanderlinden, G., A comparison of spectral and vortex methods in three-dimensional incompressible flow. J. Comput. Phys. 175 (2002) 702712. Google Scholar
M.W. Evans and F.H. Harlow, The particle-in-cell method for hydrodynamics calculations. Technical Report, Los Alamos Scientific Laboratory (1956).
Ghoniem, A. and Wee, D., Modified interpolation kernels for treating diffusion and remeshing in vortex methods. J. Comput. Phys. 213 (2006) 239263. Google Scholar
Gingold, R.A. and Monaghan, J.J., Smoothed particle hydrodynamics : theory and application to non-spherical stars. Mon. Not. R. Astron. Soc. 181 (1977) 375389. Google Scholar
Harlow, F.H., Hydrodynamic problems involving large fluid distorsion. J. Assoc. Comput. Mach. 4 (1957) 137142. Google Scholar
Harten, A., High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 49 (1983) 357393. Google Scholar
Hou, T. and Lefloch, P.G., Why non-conservative schemes converge to wrong solutions : error analysis. Math. Comput. 62 (1994) 497530. Google Scholar
Koumoutsakos, P. and Hieber, S.. A Lagrangian particle level set method. J. Comput. Phys. 210 (2005) 342367. Google Scholar
Koumoutsakos, P. and Leonard, A., High resolution simulations of the flow around an impulsively started cylinder using vortex methods. J. Fluid Mech. 296 (1995) 138. Google Scholar
Lanson, N. and Vila, J.P., Convergence des méthodes particulaires renormalisées pour les systèmes de Friedrichs. C. R. Acad. Sci. Paris, Ser. I 349 (2005) 465470. Google Scholar
Lanson, N. and Vila, J.P., Renormalized meshfree schemes II : convergence for scalar conservation laws. SIAM J. Numer. Anal. 46 (2008) 19351964. Google Scholar
R.J. LeVeque, Finite-volume methods for hyperbolic problems. Cambridge University Press (2002).
A. Magni, Méthodes particulaires avec remaillage : analyse numérique nouveaux schémas et applications pour la simulation d’équations de transport. Ph.D. thesis, Université de Grenoble. Available on : http://tel.archives-ouvertes.fr/ tel-00623128/fr/ (2011).
Magni, A. and Cottet, G.-H., Accurate, non-oscillatory, remeshing schemes for particle methods. J. Comput. Phys. 231 (2012) 152172. Google Scholar
Majda, A. and Osher, S., Numerical viscosity and the entropy condition. Commun. Pure Appl. Math. 32 (1979) 797838. Google Scholar
Monaghan, J.J., Why particle methods work. SIAM J. Sci. Stat. Comput 3 (1982) 422433. Google Scholar
Monaghan, J.J., Extrapolating B-splines for interpolation. J. Comput. Phys. 60 (1985) 253262. Google Scholar
Monaghan, J.J., Smoothed particle hydrodynamics. Annu. Rev. Astron. Astrophys. 30 (1992) 543574. Google Scholar
Ploumhans, P., Winckelmans, G.S., Salmon, J.K., Leonard, A. and Warren, M.S., Vortex methods for direct numerical simulation of three-dimensional bluff body flows : application to the sphere at Re = 300, 500, and 1000. J. Comput. Phys. 178 (2002) 427463. Google Scholar
Poncet, P., Topological aspects of the three-dimensional wake behind rotary oscillating circular cylinder. J. Fluid Mech. 517 (2004) 2753. Google Scholar
Sod, G.A., A survey of several finite-difference methods for systems of nonlinear hyperbolic conservation laws. J. Comput. Phys. 27 (1978) 1131. Google Scholar
L. Weynans, Méthode particulaire multi-niveaux pour la dynamique des gaz, application au calcul d’écoulements multifluides. Ph.D. thesis, Université Joseph Fourier. Available on : http://tel.archives-ouvertes.fr/tel-00121346/en/ (2006).