Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T13:47:25.540Z Has data issue: false hasContentIssue false

Convergence of Cell Based Finite Volume Discretizationsfor Problems of Control in the Conduction Coefficients

Published online by Cambridge University Press:  28 June 2011

Anton Evgrafov
Affiliation:
Department of Mathematics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark. a.evgrafov@mat.dtu.dk
Misha Marie Gregersen
Affiliation:
Department of Mathematics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark. a.evgrafov@mat.dtu.dk
Mads Peter Sørensen
Affiliation:
Department of Mathematics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark. a.evgrafov@mat.dtu.dk
Get access

Abstract

We present a convergence analysis of a cell-based finite volume (FV) discretization scheme applied to a problem of control in the coefficients of a generalized Laplace equation modelling, for example, a steady state heat conduction. Such problems arise in applications dealing with geometric optimal design, in particular shape and topology optimization, and are most often solved numerically utilizing a finite element approach. Within the FV framework for control in the coefficients problems the main difficulty we face is the need to analyze the convergence of fluxes defined on the faces of cells, whereas the convergence of the coefficients happens only with respect to the “volumetric” Lebesgue measure. Additionally, depending on whether the stationarity conditions are stated for the discretized or the original continuous problem, two distinct concepts of stationarity at a discrete level arise.We provide characterizations of limit points, with respect to FV mesh size, of globally optimal solutions and two types of stationary points to the discretized problems. We illustrate the practical behaviour of our cell-based FV discretization algorithm on a numerical example.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aage, N., Poulsen, T.H., Gersborg-Hansen, A. and Sigmund, O., Topology optimization of large scale Stokes flow problems. Struct. Multidisc. Optim. 35 (2008) 175180. CrossRef
S. Agmon, Lectures on elliptic boundary value problems. Van Nostrand, Princeton, N.J. (1965).
G. Allaire, Conception optimale de structures, Mathématiques et Applications 58. Springer (2007).
Ambrosio, L. and Buttazzo, G., An optimal design problem with perimeter penalization. Calc. Var. Partial Differential Equations 1 (1993) 5569. CrossRef
Andreasen, C.S., Gersborg, A.R. and Sigmund, Ole, Topology optimization of microfluidic mixers. Int. J. Numer. Methods Fluids 61 (2008) 498513. CrossRef
H. Attouch, G. Buttazzo and G. Michaille, Variational analysis in Sobolev and BV spaces: applications to PDEs and optimization. SIAM (2006) 648. ISBN 9780898716009.
M.S. Bazaraa, H.D. Sherali and C.M. Shetty, Nonlinear Programming. John Wiley & Sons, Inc, New York (1993).
Bendsøe, M.P. and Kikuchi, N., Generating optimal topologies in structural design using a homogenization method. Comput. Methods Appl. Mech. Engrg. 71 (1988) 197224. CODEN CMMECC. ISSN 0045-7825. CrossRef
M.P. Bendsøe and O. Sigmund, Topology Optimization: Theory, Methods, and Applications. Springer-Verlag, Berlin (2003). 370. ISBN 3-540-42992-1.
J.F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems. Springer-Verlag, New York (2000), p. 601. ISBN 0-387-98705-3.
Borrvall, T. and Petersson, J., Topology optimization of fluids in Stokes flow. Int. J. Numer. Methods Fluids 41 (2003) 77107. CODEN IJNFDW. ISSN 0271-2091. CrossRef
B. Dacorogna, Direct methods in the calculus of variations, Applied Mathematical Sciences 78. Springer-Verlag, Berlin (1989). x+308 ISBN 3-540-50491-5.
Di Pietro, D.A. and Ern, A., Discrete functional analysis tools for Discontinuous Galerkin methods with application to the incompressible Navier-Stokes equations. Math. Comput. 79 (2010) 13031330. CrossRef
L.C. Evans and R.F. Gariepy, Measure theory and fine properties of functions. CRC Press (1992).
Evgrafov, A., On the limits of porous materials in the topology optimization of Stokes flows. Appl. Math. Optim. 52 (2005) 263267. CrossRef
Evgrafov, A., Topology optimization of slightly compressible fluids. Z. Angew. Math. Mech. 86 (2005) 4662. CrossRef
A. Evgrafov, G. Pingen and K. Maute, Topology optimization of fluid problems by the lattice Boltzmann method, in IUTAM Symposium on Topological Design Optimization of Structures, Machines and Materials: Status and Perspectives, edited by M.P. Bendsøe, N. Olhoff and O. Sigmund. Springer, Netherlands (2006) 559–568.
Evgrafov, A., Pingen, G. and Maute, K., Topology optimization of fluid domains: Kinetic theory approach. Z. Angew. Math. Mech. 88 (2008) 129141. CrossRef
Evgrafov, A., Maute, K., Yang, R.G. and Dunn, M.L., Topology optimization for nano-scale heat transfer. Int. J. Numer. Methods Engrg. 77 (2009) 285. ISSN 00295981. CrossRef
R. Eymard, T. Gallouët and R. Herbin, Finite volume methods, in Handbook of Numerical Analysis, edited by P.G. Ciarlet and J.L. Lions 7. North Holland (2000) 713–1020.
Eymard, R., Gallouët, T. and Herbin, R., A cell-centred finite-volume approximation for anisotropic diffusion operators on unstructured meshes in any space dimension. IMA J. Numer. Anal 26 (2006) 326353. http://imajna.oxfordjournals.org/cgi/content/abstract/26/2/326. CrossRef
R. Eymard, T. Gallouët, R. Herbin and J.-C. Latche, Analysis tools for finite volume schemes. Acta Math. Univ. Comenianae LXXVI (2007) 111–136.
Fernandes, P., Guedes, J.M. and Rodrigues, H., Topology optimization of three-dimensional linear elastic structures with a constraint on “perimeter”. Comput. Struct. 73 (1999) 583594. CODEN CMSTCJ. ISSN 0045-7949. CrossRef
Gallouët, T., Herbin, R. and Vignal, M.H., Error estimates on the approximate finite volume solution of convection diffusion equations with general boundary conditions. SIAM J. Numer. Anal. 37 (2000) 19351972. http://link.aip.org/link/?SNA/37/1935/1. CrossRef
Gersborg-Hansen, A., Bendsøe, M. and Sigmund, O., Topology optimization of heat conduction problems using the finite volume method. Struct. Multidisc. Optim. 31 (2006) 251259. ISSN 1615-147X. CrossRef
Gersborg-Hansen, A., Sigmund, O. and Haber, R.B., Topology optimization of channel flow problems. Struct. Multidisc. Optim. 30 (2005) 181192. CrossRef
Gregersen, M.M., Okkels, F., Bazant, M.Z. and Bruus, H., Topology and shape optimization of induced-charge electro-osmotic micropumps. New J. Phys. 11 (2009) 075019. http://stacks.iop.org/1367-2630/11/i=7/a=075019. CrossRef
R.B. Haber, M.P. Bendsøe and C.S. Jog, Perimeter constrained topology optimization of continuum structures, in IUTAM Symposium on Optimization of Mechanical Systems (Stuttgart, 1995). Solid Mech. Appl. 43. Kluwer Acad. Publ., Dordrecht (1996) 113–120.
F.R. Klimetzek, J. Paterson and O. Moos, Autoduct: topology optimization for fluid flow, in Proceedings of Konferenz für angewandte Optimierung. Karlsruhe (2006).
Kreissl, S., Pingen, G., Evgrafov, A. and Maute, K., Topology optimization of flexible micro-fluidic devices. Struct. Multidisc. Optim. 42 (2010) 495516. ISSN 1615-147X. http://dx.doi.org/10.1007/s00158-010-0526-6. CrossRef
B. Mohammadi and O. Pironneau, Applied shape optimization for fluids. Numerical Mathematics and Scientific Computation, Oxford University Press, New York (2001) xvi+251. ISBN 0-19-850743-7.
O. Moos, F.R. Klimetzek and R. Rossmann, Bionic optimization of air-guiding systems, in Proceedings of SAE 2004 World Congress & Exhibition. Detroit, MI, USA, Society of Automotive Engineering, Inc (2004) 95–100.
Okkels, F. and Bruus, H., Design of micro-fluidic bio-reactors using topology optimization. J. Comput. Theoret. Nano. 4 (2007) 814816. CrossRef
Olesen, L.H., Okkels, F. and Bruus, H., A high-level programming-language implementation of topology optimization applied to steady-state Navier-Stokes flow. Int. J. Numer. Meth. Engrg. 65 (2006) 9751001. CrossRef
C. Othmer, A continuous adjoint formulation for the computation of topological and surface sensitivities of ducted flows. Internat. J. Numer. Methods Fluids 58 (2008).
C. Othmer, Th. Kaminski and R. Giering, Computation of topological sensitivities in fluid dynamics: Cost function versatility, in ECCOMAS CFD 2006, Delft (2006).
J. Outrata, M. Kočvara and J. Zowe, Nonsmooth Approach to Optimization Problems with Equilibrium Constraints. Kluwer Academic Publishers, Dordrecht (1998) xxii+273. ISBN 0-7923-5170-3.
Petersson, J., Some convergence results in perimeter-controlled topology optimization. Comput. Methods Appl. Mech. Engrg. 171 (1999) 123140. CrossRef
Pingen, G., Evgrafov, A. and Maute, K., A parallel Schur complement solver for the solution of the adjoint steady-state lattice Boltzmann equations: application to design optimization. Int. J. Comput. Fluid Dynamics 22 (2008) 464475.
Pingen, G., Evgrafov, A. and Maute, K., Adjoint parameter sensitivity analysis for the hydrodynamic lattice Boltzmann method with applications to design optimization. Comput. Fluids 38 (2009) 910923. CrossRef
Pingen, G., Waidmann, M., Evgrafov, A. and Maute, K., A parametric level-set approach for topology optimization of flow domains. Struct. Multidisc. Optim. 41 (2010) 117131. ISSN 1615-147X. http://dx.doi.org/10.1007/s00158-009-0405-1. CrossRef
Svanberg, K., The method of moving asymptotes—a new method for structural optimization. Int. J. Numer. Methods Engrg. 24 (1987) 359373. CODEN IJNMBH. ISSN 0029-5981. CrossRef
Svanberg, K., A class of globally convergent optimization methods based on conservative convex separable approximations. SIAM J. Optim. 12 (2002) 555573. ISSN 1095-7189. CrossRef
Toader, A.-M., Convergence of an algorithm in optimal design. Struct. Optim. 13 (1997) 195198. CrossRef
Wadbro, E. and Berggren, M., Megapixel topology optimization on a graphics processing unit. SIAM Rev. 5 (2009) 707721. CrossRef
E. Zeidler, Applied Functional Analysis: Main Principles and Their Applications, 1st edition. Springer (1995). ISBN 0387944222.