Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-10T21:31:30.614Z Has data issue: false hasContentIssue false

Convergence of locally divergence-free discontinuous-Galerkin methods for the induction equations of the 2D-MHD system

Published online by Cambridge University Press:  15 November 2005

Nicolas Besse
Affiliation:
Institut de Recherche Mathematique Avancée, Université Louis Pasteur, CNRS, 7 rue René Descartes, 67084 Strasbourg Cedex, France. besse@math.u-strasbg.fr
Dietmar Kröner
Affiliation:
Institut für Angewandte Mathematik Universität Freiburg, Hermann-Herder-Str. 10, 79104 Freiburg i. Br., Germany. dietmar@mathematik.uni-freiburg.de
Get access

Abstract

We present the convergence analysis of locally divergence-free discontinuous Galerkin methodsfor the induction equations which appear in the ideal magnetohydrodynamic system. When we use a second order Runge Kutta time discretization, under the CFL condition $\Delta t\sim h^{4/3}$ , we obtain error estimates in L 2 of order $\mathcal{O} (\Delta t^2 + h^{m + 1/2})$ where m is the degree of the local polynomials.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

S. Alinhac and P. Gérard, Opérateurs pseudo-différentiels et théorème de Nash-Moser, CNRS Éditions (1991).
Baker, G.A., Jureidini, W.N. and Karakashian, O.A., A piecewise solenoidal vector fields and the stokes problem. SIAM J. Numer. Anal. 27 (1990) 1466-1485. CrossRef
Balsara, D.S. and Spicer, D.S., A piecewise solenoidal vector fields and the stokes problem. J. Comput. Phys. 149 (1999) 270292. CrossRef
J.U. Brackbill and D.C. Barnes. The effect of nonzero $\nabla\cdot {\bf B}$ on the numerical solution of the magnetohydrodynamic equations. J. Comput. Phys. 35 (1980) 426.
P.G. Ciarlet, Basic error estimates for elliptic problems, in Handbook of numerical analysis, P.G. Ciarlet and J.-L. Lions, Eds., North-Holland (1991) 17–351.
Cockburn, B., Discontinuous Galerkin methods for convection dominated problems, in High-order methods for computational physics, Springer, Berlin. Lect. Notes Comput. Sci. Eng. 9 (1999) 69224. CrossRef
Cockburn, B., Li, F. and Shu, C.-W., Locally divergence-free discontinuous Galerkin-methods for the Maxwell equations. J. Comput. Phys. 194 (2004) 588610. CrossRef
Costabel, M., A remark on the regularity of solutions of Maxwell's equations on Lipschitz domains. Math. Method Appl. Sci. 12 (1990) 365368. CrossRef
M. Costabel and M. Dauge, Un résultat de densité pour les équations de Maxwell régularisées dans un domaine lipschitzien. C. R. Acad. Sci. Paris Sér. I 327 849–854 (1998).
Dai, W. and Woodward, P.R., On the divergence-free condition and conservation laws in numerical simulations for supersonic magnetohydrodynamic flow. Astrophys. J. 494 (1998) 317. CrossRef
Dedner, A., Kemm, F., Kröner, D., Munz, C.-D., Schnitzer, T. and Wesenberg, M., Hyperbolic Divergence cleaning for the MHD equations. J. Comput. Phys. 175 (2002) 645673. CrossRef
Evans, C.R. and Hawley, J.F., Simulation of magnetohydrodynamic flows, a constrained transport method. Astrophys. J. 332 (1988) 659. CrossRef
Foias, C. and Temam, R., Remarques sur les équations de Navier-Stokes et les phénoménes successifs de bifurcation. Ann. Sci. Norm. Sup. Pisa Sér. IV 5 (1978) 2963.
K.O. Friedrichs, Symmetric positive linear differential equations. Comm. Pure Appl. Math. XI (1958) 333–418.
V. Gilrault and P.-A. Raviart, Finite element methods for the Navier-Stokes equatons, Theory and algorithms. Springer Ser. Comput. Math. 5 (1986).
Karakashian, O.A. and Jureidini, W.N., A nonconforming finite element method for the stationary Navier-Stokes equations. SIAM J. Numer. Anal. 35 (1998) 93120. CrossRef
Li, F., Shu, C.-W., Locally divergence-free discontinuous Galerkin methods for MHD equations. SIAM J. Sci. Comput. 27 (2005) 413442. CrossRef
Lions, J.-L. and Petree, J., Sur une classe d'espaces d'interpolation. Publ. I.H.E.S. 19 (1964) 568. CrossRef
Nédélec, J.C., Mixed finite element in ${\mathbb{R}}^3$ . Numer. Math. 35 (1980) 315341. CrossRef
K.G. Powell, An approximate Riemann solver for magnetohydrodynamics (that works in more than one dimension), ICASE-Report 94-24 (NASA CR-194902), NASA Langley Research Center, Hampton, VA 23681-0001 (1994).
P.-A. Raviart and J.M. Thomas, A mixed finite element method for 2nd order elliptic problems, Mathematical aspects of finite elements methods, in Proc. of the conference held in Rome, 10–12 Dec. 1975, A. Dold, B. Eckmann, Eds., Springer, Berlin, Heidelberg, New York. Lect. Notes Math. 606 (1977).
G. Tóth, The $\nabla \cdot {\bf B}=0$ constraint in shock-capturing magnetohydrodynamics codes. J. Comput. Phys. 161 (2000) 605.
Ying, L., A second order explicit finite element scheme to multidimensional conservation laws and its convergence. Sci. China Ser. A 43 (2000) 945957. CrossRef
Zhang, Q. and Shu, C.-W., Error Estimates to smooth solutions of Runge-Kutta discontinuous Galerkin methods for scalar conservation laws. SIAM J. Numer. Anal. 42 (2004) 641666. CrossRef