Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-14T01:03:40.019Z Has data issue: false hasContentIssue false

A discrete contact model for crowd motion

Published online by Cambridge University Press:  24 June 2010

Bertrand Maury
Affiliation:
Laboratoire de Mathématiques, Université Paris-Sud XI, 91405 Orsay Cedex, France. juliette.venel@math.u-psud.fr
Juliette Venel
Affiliation:
Laboratoire de Mathématiques, Université Paris-Sud XI, 91405 Orsay Cedex, France. juliette.venel@math.u-psud.fr
Get access

Abstract

The aim of this paper is to develop a crowd motion model designed to handle highly packed situations. The model we propose rests on two principles: we first define a spontaneous velocity which corresponds to the velocity each individual would like to have in the absence of other people. The actual velocity is then computed as the projection of the spontaneous velocity onto the set of admissible velocities (i.e. velocities which do not violate the non-overlapping constraint). We describe here the underlying mathematical framework, and we explain how recent results by J.F. Edmond and L. Thibault on the sweeping process by uniformly prox-regular sets can be adapted to handle this situation in terms of well-posedness. We propose a numerical scheme for this contact dynamics model, based on a prediction-correction algorithm. Numerical illustrations are finally presented and discussed.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bellomo, N. and Dogbe, C., On the modelling crowd dynamics from scalling to hyperbolic macroscopic models. Math. Mod. Meth. Appl. Sci. 18 (2008) 13171345. CrossRef
Bernicot, F. and Venel, J., Existence of sweeping process in Banach spaces under directional prox-regularity. J. Convex Anal. 17 (2010) 451484.
Blue, V. and Adler, J.L., Cellular automata microsimulation for modeling bi-directional pedestrian walkways. Transp. Res. B 35 (2001) 293312. CrossRef
Borgers, A. and Timmermans, H., City centre entry points, store location patterns and pedestrian route choice behaviour: A microlevel simulation model. Socio-Econ. Plann. Sci. 20 (1986) 2531. CrossRef
Borgers, A. and Timmermans, H., A model of pedestrian route choice and demand for retail facilities within inner-cityshopping areas. Geogr. Anal. 18 (1986) 115128. CrossRef
Bounkhel, M. and Thibault, L., On various notions of regularity of sets in nonsmooth analysis. Nonlinear Convex Anal. 48 (2002) 223246. CrossRef
H. Brezis, Opérateurs Maximaux Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert. AM, North Holland (1973).
Burstedde, C., Klauck, K., Schadschneider, A. and Zittartz, J., Simulation of pedestrian dynamics using a two-dimensional cellular automaton. Physica A 295 (2001) 507525. CrossRef
Buttazzo, G., Jimenez, C. and Oudet, E., An optimization problem for mass transportation with congested dynamics. SIAM J. Control Optim. 48 (2009) 19611976. CrossRef
P.G. Ciarlet, Introduction à l'analyse numérique matricielle et à l'optimisation. Masson, Paris (1990).
Clarke, F.H., Stern, R.J. and Wolenski, P.R., Proximal smoothness and the lower-c 2 property. J. Convex Anal. 2 (1995) 117144.
F.H. Clarke, Y.S. Ledyaev, R.J. Stern and P.R. Wolenski, Nonsmooth Analysis and Control Theory. Springer-Verlag, New York, Inc. (1998).
W. Daamen, Modelling passenger flows in public transport facilities. Ph.D. Thesis, Technische Universiteit Delft, The Netherlands (2004).
Delgado, J.A., Blaschke's theorem for convex hypersurfaces. J. Diff. Geom. 14 (1979) 489496. CrossRef
Dogbé, C., On the numerical solutions of second order macroscopic models of pedestrian flows. Comput. Math. Appl. 56 (2008) 18841898. CrossRef
J.F. Edmond and L. Thibault, Relaxation of an optimal control problem involving a perturbed sweeping process. Math. Program., Ser. B 104 (2005) 347–373.
Edmond, J.F. and Thibault, L., BV solutions of nonconvex sweeping process differential inclusion with perturbation. J. Diff. Equ. 226 (2006) 135179. CrossRef
Fruin, J.J., Design for pedestrians: A level-of-service concept. Highway Research Record 355 (1971) 115.
Gwynne, S., Galea, E.R., Lawrence, P.J. and Filippidis, L., Modelling occupant interaction with fire conditions using the buildingEXODUS evacuation model. Fire Saf. J. 36 (2001) 327357. CrossRef
Helbing, D., A fluid-dynamic model for the movement of pedestrians. Complex Syst. 6 (1992) 391415.
Helbing, D. and Molnár, P., Social force model for pedestrians dynamics. Phys. Rev. E 51 (1995) 42824286. CrossRef
Helbing, D., Farkas, I.J. and Vicsek, T., Simulating dynamical features of escape panic. Nature 407 (2000) 487. CrossRef
Henderson, L.F., The stastitics of crowd fluids. Nature 229 (1971) 381383. CrossRef
Hoogendoorn, S.P. and Bovy, P.H.L., Gas-kinetic modeling and simulation of pedestrian flows. Transp. Res. Rec. 1710 (2000) 2836. CrossRef
Hoogendoorn, S.P. and Bovy, P.H.L., Pedestrian route-choice and activity scheduling theory and models. Transp. Res. B 38 (2004) 169190. CrossRef
Hoogendoorn, S.P. and Bovy, P.H.L., Dynamic user-optimal assignment in continuous time and space. Transp. Res. B 38 (2004) 571592. CrossRef
Hughes, R., The flow of large crowds of pedestrians. Math. Comput. Simul. 53 (2000) 367370. CrossRef
Hughes, R., A continuum theory for the flow of pedestrians. Transp. Res. B 36 (2002) 507535. CrossRef
R. Kimmel and J. Sethian, Fast marching methods for computing distance maps and shortest paths. Technical Report 669, CPAM, Univ. of California, Berkeley (1996).
Kirchner, A. and Schadschneider, A., Simulation of evacuation processes using a bionics-inspired cellular automaton model for pedestrians dynamics. Physica A 312 (2002) 260276. CrossRef
H. Klüpfel and T. Meyer-König, Characteristics of the pedgo software for crowd movement and egress simulation, in Pedestrian and Evacuation Dynamics 2003, E. Galea Ed., University of Greenwich, CMS Press, London (2003) 331–340.
A. Lefebvre, Modélisation numérique d'écoulements fluide/particules, Prise en compte des forces de lubrification. Ph.D. Thesis, Université Paris-Sud XI, Faculté des sciences d'Orsay, France (2007).
Lefebvre, A., Numerical simulations of gluey particles. ESAIM: M2AN 43 (2009) 5380. CrossRef
Løvås, G.G., Modelling and simulation of pedestrian traffic flow. Transp. Res. B 28 (1994) 429443. CrossRef
Maury, B. and Venel, J., Un modèle de mouvement de foule. ESAIM: Proc. 18 (2007) 143152. CrossRef
B. Maury and J. Venel, Handling of contacts on crowd motion simulations, in Trafic and Granular Flow '07, Springer (2009) 171–180.
B. Maury, A. Roudneff-Chupin and F. Santambrogio, A macroscopic crowd motion model of gradient flow type. Math. Mod. Meth. Appl. Sci. (to appear). Available at http://cvgmt.sns.it/papers/maurousan09/.
J.J. Moreau, Décomposition orthogonale d'un espace hilbertien selon deux cônes mutuellement polaires. C. R. Acad. Sci., Ser. I 255 (1962) 238–240.
Moreau, J.J., Evolution problem associated with a moving convex set in a Hilbert space. J. Diff. Equ. 26 (1977) 347374. CrossRef
Nagel, K., From particle hopping models to traffic flow theory. Transp. Res. Rec. 1644 (1998) 19. CrossRef
Navin, P.D. and Wheeler, R.J., Pedestrian flow characteristics. Traffic Engineering 39 (1969) 3136.
A. Schadschneider, Cellular automaton approach to pedestrian dynamics-theory, in Pedestrian and Evacuation Dynamics, M. Schreckenberg and S.D. Sharma Eds., Springer, Berlin (2001) 75–85.
Schadschneider, A., Kirchner, A. and Nishinari, K., From ant trails to pedestrian dynamics. Appl. Bionics & Biomechanics 1 (2003) 1119. CrossRef
Still, G.K., New computer system can predict human behavior response to building fires. Fire 84 (1993) 4041.
J. Venel, Modélisation mathématique et numérique des mouvements de foule. Ph.D. Thesis, Université Paris-Sud XI, France, available at: http://tel.archives-ouvertes.fr/tel-00346035/fr (2008).
J. Venel, Integrating strategies in numerical modelling of crowd motion, in Pedestrian and Evacuation Dynamics '08, W.W.F. Klingsch, C. Rogsch, A. Schadschneider and M. Schreckenberg Eds., Springer, Berlin Heidelberg (2010) 641–646.
J. Venel, Numerical scheme for a whole class of sweeping process. Available at: http://arxiv.org/abs/0904.2694v2 (submitted).
U. Weidmann, Transporttechnik der fussgaenger. Technical Report 90, Schriftenreihe des Instituts für Verkehrsplanung, Transporttechnik, Strassen-und Eisenbahnbau, ETH Zürich, Switzerland (1993).
Yuhaski, S.J. and Macgregor Smith, J.M., Modelling circulation systems in buildings using state dependent queueing models. Queue. Syst. 4 (1989) 319338. CrossRef