Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-10T16:29:32.603Z Has data issue: false hasContentIssue false

Discrete Sobolev inequalities and Lp error estimates for finite volume solutions of convection diffusion equations

Published online by Cambridge University Press:  15 April 2002

Yves Coudière
Affiliation:
Inria - Projet Sinus, 2004 route des Lucioles, BP 93, 06902 Sophia-Antipolis Cedex, France. Phone: +33 (0)4 92 38 71 63. (Yves.Coudiere@sophia.inria-fr), http://www-sop.inria.fr/sinus/personnel/Yves.Coudiere
Thierry Gallouët
Affiliation:
Université d'Aix-Marseille 1, France. (gallouet@gyptis.univ-mrs.fr)
Raphaèle Herbin
Affiliation:
Université d'Aix-Marseille 1, France. (herbin@armstrong.univ-mrs.fr)
Get access

Abstract

The topic of this work is to obtain discrete Sobolev inequalities for piecewise constant functions, and to deduce Lp error estimates on the approximate solutions of convection diffusion equations by finite volume schemes.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bank, R.E. and Rose, D.J., Some error estimates for the box method. SIAM J. Numer. Anal. 24 (1987) 777-787. CrossRef
R. Belmouhoub, Modélisation tridimensionnelle de la genèse des bassins sédimentaires. Thesis, École Nationale Supérieure des Mines de Paris, France (1996).
Cai, Z., On the finite volume element method. Numer. Math. 58 (1991) 713-735. CrossRef
Cai, Z., Mandel J. and S. Mc Cormick, The finite volume element method for diffusion equations on general triangulations. SIAM J. Numer. Anal. 28 (1991) 392-402. CrossRef
W.J. Coirier and K.G. Powell, A Cartesian, cell-based approach for adaptative-refined solutions of the Euler and Navier-Stokes equations. AIAA J. 0566 (1995).
M. Dauge, Elliptic boundary value problems in corner domains. Lecture Notes in Math. 1341 Springer-Verlag, Berlin (1988).
Y. Coudière and P. Villedieu, A finite volume scheme for the linear convection-diffusion equation on locally refined meshes, in7-th international colloquium on numerical analysis, Plovdiv, Bulgaria (1998).
Y. Coudière, J.P. Vila and P. Villedieu, Convergence of a finite volume scheme for a diffusion problem, in Finite volumes for complex applications, problems and perspectives, F. Benkhaldoun and R. Vilsmeier Eds., Hermès, Paris (1996) 161-168.
Coudière, Y., Vila, J.-P. and Villedieu, P., Convergence rate of a finite volume scheme for a two dimensional convection diffusion problem. ESAIM: M2AN 33 (1999) 493-516. CrossRef
Coudière, Y. and Villedieu, P., Convergence of a finite volume scheme for a two dimensional diffusion convection equation on locally refined meshes. ESAIM: M2AN 34 (2000) 1109-1295. CrossRef
Eymard, R., Gallouët, T. and Herbin, R., Convergence of finite volume schemes for semilinear convection diffusion equations. Numerische Mathematik. 82 (1999) 91-116. CrossRef
Eymard, R. and Gallouët, T., Convergence d'un schéma de type éléments finis-volumes finis pour un système couplé elliptique-hyperbolique. RAIRO Modél. Math. Anal. Numér. 27 (1993) 843-861. CrossRef
R. Eymard, T. Gallouët and R. Herbin, The finite volume method, in Handbook of numerical analysis, P.G. Ciarlet and J.L. Lions, Eds., Elsevier Science BV, Amsterdam (2000) 715-1022.
Faille, I., A control volume method to solve an elliptic equation on a 2D irregular meshing. Comput. Methods Appl. Mech. Engrg. 100 (1992) 275-290. CrossRef
Forsyth, P.A., A control volume finite element approach to NAPL groundwater contamination. SIAM J. Sci. Stat. Comput. 12 (1991) 1029-1057. CrossRef
Forsyth, P.A. and Sammon, P.H., Quadratic convergence for cell-centered grids. Appl. Numer. Math. 4 (1988) 377-394. CrossRef
Gallouët, T., Herbin, R. and Vignal, M.H., Error estimate for the approximate finite volume solutions of convection diffusion equations with Dirichlet, Neumann or Fourier boundary conditions. SIAM J. Numer. Anal. 37 (2000) 1035-1072. CrossRef
B. Heinrich, Finite difference methods on irregular networks. A generalized approach to second order elliptic problems. Internat. Ser. Numer. Math. 82, Birkhäuser-Verlag, Stuttgart (1987).
Herbin, R., An error estimate for a finite volume scheme for a diffusion-convection problem on a triangular mesh. Numer. Methods. Partial Differ. Equations 11 (1995) 165-173. CrossRef
R. Herbin, Finite volume methods for diffusion convection equations on general meshes, in Finite volumes for complex applications, problems and perspectives, F. Benkhaldoun and R. Vilsmeier, Eds., Hermès, Paris (1996) 153-160.
F. Jacon and D. Knight, A Navier-Stokes algorithm for turbulent flows using an unstructured grid and flux difference splitting. AIAA J. 2292 (1994).
R.D. Lazarov and I.D. Mishev, Finite volume methods for reaction diffusion problems, in Finite volumes for complex applications, problems and perspectives, F. Benkhaldoun and R. Vilsmeier, Eds., Hermès, Paris (1996) 233-240 .
Lazarov, R.D., Mishev, I.D. and Vassilevski, P.S., Finite volume methods for convection-diffusion problems. SIAM J. Numer. Anal. 33 (1996) 31-55. CrossRef
Manteufel, T.A. and White, A.B., The numerical solution of second order boundary value problem on non uniform meshes. Math. Comput. 47 (1986) 511-536. CrossRef
Morton, K.W. and Süli, E., Finite volume methods and their analysis. IMA J. Numer. Anal. 11 (1991) 241-260. CrossRef
D. Trujillo, Couplage espace-temps de schémas numériques en simulation de réservoir. Ph.D. Thesis, University of Pau, France (1994).
Vassileski, P.S., Petrova, S.I. and Lazarov, R.D., Finite difference schemes on triangular cell-centered grids with local refinement. SIAM J. Sci. Statist. Comput. 13 (1992) 1287-1313. CrossRef