Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-28T05:29:59.307Z Has data issue: false hasContentIssue false

Error estimates for a FitzHugh–Nagumo parameter-dependentreaction-diffusion system

Published online by Cambridge University Press:  23 November 2012

Konstantinos Chrysafinos
Affiliation:
Department of Mathematics, National Technical University of Athnens, Zografou Campus, 15780 Athens, Greece. chrysafinos@math.ntua.gr
Sotirios P. Filopoulos
Affiliation:
Section of Applied and Theoretical Mechanics, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece; sfilop@gmail.com; papathth@gmail.com
Theodosios K. Papathanasiou
Affiliation:
Section of Applied and Theoretical Mechanics, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece; sfilop@gmail.com; papathth@gmail.com
Get access

Abstract

Space-time approximations of the FitzHugh–Nagumo system of coupled semi-linear parabolicPDEs are examined. The schemes under consideration are discontinuous in time butconforming in space and of arbitrary order. Stability estimates are presented in thenatural energy norms and at arbitrary times, under minimal regularity assumptions.Space-time error estimates of arbitrary order are derived, provided that the naturalparabolic regularity is present. Various physical parameters appearing in the model aretracked and numerical examples are presented.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akrivis, G. and Crouzeix, M., Linearly implicit methods for nonlinear parabolic equations. Math. Comput. 73 (2004) 613635. Google Scholar
Akrivis, G. and Makridakis, C., Galerkin time-stepping methods for nonlinear parabolic equations. ESAIM : M2AN 38 (2004) 261289. Google Scholar
Akrivis, G., Crouzeix, M. and Makridakis, C., Implicit-explicit multistep finite element methods for nonlinear parabolic problems. Math. Comput. 67 (1998) 457477. Google Scholar
Chiu, C. and Walkington, N.J., An ADI method for hysteric reaction-diffusion systems. SIAM J. Numer. Anal. 34 (1997) 11851206. Google Scholar
Chrysafinos, K. and Walkington, N.J., Error estimates for the discontinuous Galerkin methods for parabolic equations. SIAM J. Numer. Anal. 44 (2006) 349366. Google Scholar
Chrysafinos, K. and Walkington, N.J., Lagrangian and moving mesh methods for the convection diffusion equation. ESAIM : M2AN 42 (2008) 2756. Google Scholar
Chrysafinos, K. and Walkington, N.J., Discontinous Galerkin approximations of the Stokes and Navier–Stokes problem. Math. Comput. 79 (2010) 21352167. Google Scholar
P.G. Ciarlet, The finite element method for elliptic problems. SIAM Classics Appl. Math. (2002).
Delfour, M., Hager, W. and Trochu, F., Discontinuous Galerkin methods for ordinary differential equations. Math. Comput. 36 (1981) 455473. Google Scholar
Descombes, S and Ribot, M., Convergence of the Peaceman–Rachford approximation for reaction-diffusion systems. Numer. Math. 95 (2003) 503525. Google Scholar
Eriksson, K. and Johnson, C., Adaptive finite element methods for parabolic problems. I. A linear model problem. SIAM J. Numer. Anal. 28 (1991) 4377. Google Scholar
Eriksson, K. and Johnson, C., Adaptive finite element methods for parabolic problems. II. Optimal error estimates in L (L 2) and L (L ). SIAM J. Numer. Anal. 32 (1995) 706740. Google Scholar
Ericksson, K. and Johnson, C., Adaptive finite element methods for parabolic problems IV : Nonlinear problems. SIAM J. Numer. Anal. 32 (1995) 17291749. Google Scholar
Eriksson, K., Johnson, C. and Thomée, V., Time discretization of parabolic problems by the discontinuous Galerkin method. ESAIM : M2AN 29 (1985) 611643. Google Scholar
Estep, D. and Larsson, S., The discontinuous Galerkin method for semilinear parabolic equations. ESAIM : M2AN 27 (1993) 3554. Google Scholar
D. Estep, M. Larson and R. Williams, Estimating the error of numerical solutions of systems of reaction-diffusion equations. Mem. Amer. Math. Soc. 146 (2000) viii+109.
L. Evans, Partial Differential Equations. AMS, Providence, RI (1998).
P. Fife, Mathematical aspects of reacting and diffusing systems. Lect. Notes Biomath. 28 (1978).
FitzHugh, R., Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1 (1961) 445466. Google ScholarPubMed
Franzone, P., Deflhard, P., Erdmann, B., Lang, J. and Pavarino, L., Adaptivity in space and time for reaction-diffusion systems in electrocardiology. SIAM J. Sci. Comput. 28 (2006) 942962. Google Scholar
Garvie, M.R. and Blowey, J.M., A reaction-diffusion system of λω type. Part II : Numerical analysis. Eur. J. Appl. Math. 16 (2005) 621646. Google Scholar
Garvie, M.R. and Trenchea, C., Finite element approximation of spatially extended predator interactions with the Holling type II functional response. Numer. Math. 107 (2008) 641667. Google Scholar
V. Girault and P.-A. Raviart, Finite Element Methods for Navier–Stokes. Springer-Verlag, New York (1986).
Gunzburger, M.D., Hou, L.S. and Zhu, W., Fully discrete finite element approximation of the forced Fisher equation. J. Math. Anal. Appl. 313 (2006) 419440. Google Scholar
Hansen, E. and Ostermann, A., Dimension splitting for evolution equations. Numer. Math. 108 (2008) 557570. Google Scholar
Hastings, S.P., Some mathematical models from neurobiology. Amer. Math. Monthly 82 (1975) 881895. Google Scholar
W. Hundsdorfer and J. Verwer, Numerical solution for time-dependent advection-diffusion-reaction equations. Springer-Verlag, Berlin (2003).
Jackson, D., Existence and regularity for the FitzHugh–Nagumo equations with inhomogeneous boundary conditions. Nonlinear Anal. Theory Methods Appl. 14 (1990) 201216. Google Scholar
Jackson, D., Error estimates for the semidiscrete Galerkin approximations of the FitzHugh–Nagumo equations. Appl. Math. Comput. 50 (1992) 93114. Google Scholar
Jamet, P., Galerkin-type approximations which are discontinuous in time for parabolic equations in a variable domain. SIAM J. Numer. Anal. 15 (1978) 912928. Google Scholar
C. Johnson, Numerical Solution of Partial Differential Equations by the Finite Element Method. Cambridge (1987).
P. Lasaint and P.-A. Raviart, On a finite element method for solving the neutron transport equation, in Mathematical aspects of finite elements in partial differential equations, edited by C. de Boor. Academic Press, New York (1974) 89–123.
Meidner, D. and Vexler, B., A priori error estimates for space-time finite element discretization of parabolic optimal control problems. Part I : Problems without control constraints. SIAM J. Control. Optim. 47 (2008) 11501177. Google Scholar
Nagaiah, C., Kunisch, K. and Plank, G., Numerical solution for optimal control problems of the reaction diffusion equations in cardiac electrophysiology. Comput. Optim. Appl. 49 (2011) 149178. Google Scholar
Nagumo, J.S., Arimoto, S. and Yoshizawa, S., An active pulse transmission line simulating nerve axon. Proc. IRE 50 (1962) 20612070. Google Scholar
C.S. Peskin, Partial Differential Equations in Biology. Courant Institute of Mathematical Sciences, New York (1975).
Schoenbek, M.E., Boundary value problems for the FitzHugh–Nagumo equations. J. Differ. Equ. 30 (1978) 119147. Google Scholar
R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics. Appl. Math. Sci. 68 (1997).
Theodoropoulos, C., Qian, Y.-H. and Kevrekidis, I.G., “Coarse” stability and bifurcation analysis using time-steppers : a reaction-diffusion example. Proc. Natl. Acad. Sci. USA 97 (2000) 98409843. Google ScholarPubMed
V. Thomée, Galerkin finite element methods for parabolic problems. Spinger-Verlag, Berlin (1997).
Walkington, N.J., Compactness properties of CG and DG schemes. SIAM J. Numer. Anal. 47 (2010) 46804710. Google Scholar
E. Zeidler, Nonlinear functional analysis and its applications, in II/B Nonlinear monotone operators. Springer-Verlag, New York (1990).