Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-28T04:53:49.935Z Has data issue: false hasContentIssue false

A finite element method for domaindecompositionwith non-matching grids

Published online by Cambridge University Press:  15 November 2003

Roland Becker
Affiliation:
Institute of Applied Mathematics, University of Heidelberg, INF 294, 69120 Heidelberg, Germany.
Peter Hansbo
Affiliation:
Department of Applied Mechanics, Chalmers University of Technology, 412 96 Göteborg, Sweden. hansbo@am.chalmers.se.
Rolf Stenberg
Affiliation:
Institute of Mathematics, Box 1100, 02015 Helsinki University of Technology, Finland.
Get access

Abstract

In this note, we propose and analyse a method for handlinginterfaces between non-matching grids based on an approachsuggested by Nitsche (1971) for the approximation ofDirichlet boundary conditions. The exposition is limited toself-adjoint elliptic problems, using Poisson's equation as amodel. A priori and a posteriori error estimates are given. Somenumerical results are included.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

J.-P. Aubin, Approximation of Elliptic Boundary-Value Problem. Wiley (1972).
Arnold, D., An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19 (1982) 742-760. CrossRef
C. Baiocchi, F. Brezzi and L.D. Marini, Stabilization of Galerkin methods and applications to domain decomposition, in Future Tendencies in Computer Science, Control and Applied Mathematics, A. Bensoussan and J.-P. Verjus Eds., Springer (1992) 345-355.
Barbosa, J.C. and Hughes, T.J.R., Boundary Lagrange multipliers in finite element methods: error analysis in natural norms. Numer. Math. 62 (1992) 1-15. CrossRef
Barrett, J.W. and Elliot, C.M., Finite element approximation of the Dirichlet problem using the boundary penalty method. Numer. Math. 49 (1986) 343-366. CrossRef
R. Becker and P. Hansbo, Discontinuous Galerkin methods for convection-diffusion problems with arbitrary Péclet number, in Numerical Mathematics and Advanced Applications: Proceedings of the 3rd European Conference, P. Neittaanmäki, T. Tiihonen and P. Tarvainen Eds., World Scientific (2000) 100-109.
Becker, R. and Rannacher, R., A feed-back approach to error control in finite element methods: basic analysis and examples. East-West J. Numer. Math. 4 (1996) 237-264.
C. Bernadi, Y. Maday and A. Patera, A new nonconforming approach to domain decomposition: the mortar element method, in Nonlinear Partial Differential Equations and Their Application, H. Brezis and J.L. Lions Eds., Pitman (1989).
F. Brezzi, L.P. Franca, D. Marini and A. Russo, Stabilization techniques for domain decomposition methods with non-matching grids, IAN-CNR Report N. 1037, Istituto di Analisi Numerica Pavia.
J. Freund and R. Stenberg, On weakly imposed boundary conditions for second order problems, in Proceedings of the Ninth Int. Conf. Finite Elements in Fluids, M. Morandi Cecchi et al. Eds., Venice (1995) 327-336.
J. Freund, Space-time finite element methods for second order problems: an algorithmic approach. Acta Polytech. Scand. Math. Comput. Manage. Eng. Ser. 79 (1996).
B. Heinrich and S. Nicaise, Nitsche mortar finite element method for transmission problems with singularities. SFB393-Preprint 2001-10, Technische Universität Chemnitz (2001).
Heinrich, B. and Pietsch, K., Nitsche type mortaring for some elliptic problem with corner singularities. Computing 68 (2002) 217-238. CrossRef
Johnson, C. and Hansbo, P., Adaptive finite element methods in computational mechanics. Comput. Methods Appl. Mech. Engrg. 101 (1992) 143-181. CrossRef
Le Tallec, P. and Sassi, T., Domain decomposition with nonmatching grids: augmented Lagrangian approach. Math. Comp. 64 (1995) 1367-1396. CrossRef
P.L. Lions, On the Schwarz alternating method III: a variant for nonoverlapping subdomains, in Third International Symposium on Domain Decomposition Methods for Partial Differential Equations, T.F. Chan, R. Glowinski, J. Periaux and O.B. Widlund Eds., SIAM (1989) 202-223.
Nitsche, J., Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abh. Math. Sem. Univ. Hamburg 36 (1971) 9-15. CrossRef
Stenberg, R., On some techniques for approximating boundary conditions in the finite element method. J. Comput. Appl. Math. 63 (1995) 139-148. CrossRef
R. Stenberg, Mortaring by a method of J.A. Nitsche, in Computational Mechanics: New Trends and Applications, S. Idelsohn, E. Onate and E. Dvorkin Eds., CIMNE, Barcelona (1998).
V. Thomée, Galerkin Finite Element Methods for Parabolic Problems. Springer (1997).
Wohlmuth, B.I., A residual based error estimator for mortar finite element discretizations. Numer. Math. 84 (1999) 143-171. CrossRef