Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-28T06:06:22.395Z Has data issue: false hasContentIssue false

Finite element methods on non-conforming gridsby penalizing the matching constraint

Published online by Cambridge University Press:  15 November 2003

Eric Boillat*
Affiliation:
Department of Mechanical Engineering, Laboratory for Production Management and Process, EPFL, 1015 Lausanne, Switzerland. eric.boillat@epfl.ch.
Get access

Abstract

The present paper deals with a finite element approximation of partial differential equations when the domain is decomposed into sub-domains which are meshed independently. The method we obtain is never conforming because the continuity constraints on the boundary of the sub-domains are not imposed strongly but only penalized. We derive a selection rule for the penalty parameter which ensures a quasi-optimal convergence.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

R.A. Adams, Sobolev Spaces. Academic Press, New-York, San Francisco, London (1975).
Ben Belgacem, F., The mortar finite element method with Lagrange multipliers. Numer. Math. 84 (1999) 173-197. CrossRef
Ben Belgacem, F. and Maday, Y., The mortar element method for three dimensional finite elements. RAIRO Modél. Math. Anal. Numér. 31 (1997) 289-302. CrossRef
Bercovier, M., Perturbation of mixed variational problems. Application to mixed finite element methods. RAIRO Anal. Numér. 12 (1978) 211-236. CrossRef
F. Brezzi and M. Fortin, Mixed and Hybride Finite Element Methods. Springer-Verlag, New York (1991).
P.G. Ciarlet, The Finite Element Method for Elliptic Problem. North Holland, Amsterdam (1978).
Clement, P., Approximation by finite element using local regularization. RAIRO Ser. Rouge 8 (1975) 77-84.
P. Grisvard, Elliptic Problems in Nonsmooth Domains. Pitman, Boston (1985).
J.L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications, Vol. 1, Dunod, Paris (1968).
Y. Maday, C. Bernardi and A.T. Patera, A new nonconforming approach to domain decomposition: the mortar element method, in Nonlinear Partial Differential Equations and their applications, H. Brezis and J.L. Lions Eds., Vol. XI, Pitman (1994) 13-51.
J. Nitsche, Über eine Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abh. Math. Sem. Univ. Hamburg 36 (1970/1971) 9-15.
Schotzau, D., Schwab, C. and Stenberg, R., Mixed hp-fem on anisotropic meshes ii. Hanging nodes and tensor products of boundary layer meshes. Numer. Math. 83 (1999) 667-697. CrossRef
Stenberg, R., On some techniques for approximating boundary conditions in the finite element method. J. Comput. Appl. Math. 63 (1995) 139-148. CrossRef