Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-10T15:37:44.371Z Has data issue: false hasContentIssue false

High order semi-Lagrangian particle methodsfor transport equations:numerical analysis and implementation issues

Published online by Cambridge University Press:  30 June 2014

G.-H. Cottet
Affiliation:
UniversitéGrenoble Alpes and CNRS, Laboratoire Jean Kuntzmann, BP 53 38041, Grenoble Cedex 9, France. georges-henri.cottet@imag.fr
J.-M. Etancelin
Affiliation:
UniversitéGrenoble Alpes and CNRS, Laboratoire Jean Kuntzmann, BP 53 38041, Grenoble Cedex 9, France. georges-henri.cottet@imag.fr
F. Perignon
Affiliation:
UniversitéGrenoble Alpes and CNRS, Laboratoire Jean Kuntzmann, BP 53 38041, Grenoble Cedex 9, France. georges-henri.cottet@imag.fr
C. Picard
Affiliation:
UniversitéGrenoble Alpes and CNRS, Laboratoire Jean Kuntzmann, BP 53 38041, Grenoble Cedex 9, France. georges-henri.cottet@imag.fr
Get access

Abstract

This paper is devoted to the definition, analysis and implementation of semi-Lagrangian methods as they result from particle methods combined with remeshing. We give a complete consistency analysis of these methods, based on the regularity and momentum properties of the remeshing kernels, and a stability analysis of a large class of second and fourth order methods. This analysis is supplemented by numerical illustrations. We also describe a general approach to implement these methods in the context of hybrid computing and investigate their performance on GPU processors as a function of their order of accuracy.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bergdorf, M., Cottet, G.-H. and Koumoutsakos, P., Multilevel adaptive particle methods for convection-diffusion equations. SIAM Multiscale Model. Simul. 4 (2005) 328357. Google Scholar
Bergdorf, M. and Koumoutsakos, P., A lagrangian particle-wavelet method. SIAM Multiscale Model. Simul. 5 (2006) 980995. Google Scholar
Büyükkeçeci, F., Awile, O. and Sbalzarini, I., A portable opencl implementation of generic particle-mesh and mesh-particle interpolation in 2d and 3d. Parallel Comput. 39 (2013) 94111. Google Scholar
Chorin, A., Numerical study of slightly viscous flow. J. Fluid Mech. 57 (1973) 785796. Google Scholar
Cocle, C., Winckelmans, G. and Daeninck, G., Combining the vortex-in-cell and parallel fast multipole methods for efficient domain decomposition simulations. J. Comput. Phys. 227 (2008) 90919120. Google Scholar
Cotter, C., Frank, J. and Reich, S., The remapped particle-mesh semi-lagrangian advection scheme. Q. J. Meteorol. Soc. 133 (2007) 251260. Google Scholar
G.-H. Cottet and P. Koumoutsakos, Vortex methods. Cambridge University Press (2000).
Cottet, G.-H. and Weynans, L., Particle methods revisited: a class of high order finite-difference methods. C.R. Math. 343 (2006) 5156. Google Scholar
Crouseilles, N., Respaud, T. and Sonnendrücker, E., A forward semi-lagrangian method for the numerical solution of the vlasov equation. Comput. Phys. Commun. 180 (2009) 17301745. Google Scholar
R. Hockney and J. Eastwood, Simulation Using Particles. Inst. Phys. Publ. (1988).
Klöckner, A., Pinto, N., Lee, Y., Catanzaro, B., Ivanov, P. and Fasih, A., PyCUDA and PyOpenCL: A Scripting-Based Approach to GPU Run-Time Code Generation. Parallel Comput. 38 (2012) 157174. Google Scholar
Koumoutsakos, P., Inviscid axisymmetrization of an elliptical vortex. J. Comput. Phys. 138 (1997) 821857. Google Scholar
Koumoutsakos, P. and Leonard, A., High resolution simulation of the flow around an impulsively started cylinder using vortex methods. J. Fluid Mech. 296 (1995) 138. Google Scholar
Labbé, S., Laminie, J. and Louvet, V., Méthodologie et environnement de développement orientés objets: de l’analyse mathématique à la programmation. MATAPLI 70 (2003) 7992. Google Scholar
Lagaert, J.-B., Balarac, G, and Cottet, G.-H., Hybrid spectral particle method for turbulent transport of passive scalar. J. Comput. Phys. 260 (2014) 127142. Google Scholar
Leonard, A.. Computing three-dimensional incompressible flows with vortex elements. Annu. Rev. Fluid Mech. 17 (1985) 523559. Google Scholar
LeVeque, R.J., High-resolution conservative algorithms for advection in incompressible flow. SIAM J. Numer. Anal. 33 (1996) 627665. Google Scholar
Magni, A. and Cottet, G.-H., Accurate, non-oscillatory, remeshing schemes for particle methods. J. Comput. Phys. 231 (2012) 152172. Google Scholar
Monaghan, J., Extrapolating B splines for interpolation. J. Comput. Phys. 60 (1985) 253262. Google Scholar
Monaghan, J., An introduction to sph. Comput. Phys. Commun. 48 (1988) 8996. Google Scholar
A. Munshi, The OpenCL Specification. Khronos OpenCL Working Group (2011).
Ould-Salihi, M., Cottet, G.-H. and El Hamraoui, M., Blending finite-difference and vortex methods for incompressible flow computations. SIAM J. Sci. Comput. 22 (2000) 16551674. Google Scholar
Respaud, T. and Sonnendruücker, E., Analysis of a new class of forward semi-lagrangian schemes for the 1d Vlasov-Poisson equations. Numer. Math. 118 (2011) 329366. Google Scholar
Rossinelli, D., Bergdorf, M., Cottet, G.H. and Koumoutsakos, P., GPU accelerated simulations of bluff body flows using vortex methods. J. Comput. Phys. 229 (2010) 33163333. Google Scholar
Rossinelli, D., Conti, C. and Koumoutsakos, P., Mesh-particle interpolations on graphics processing units and multicorecentral processing units. Philosophical Transactions of the Royal Society A: Mathematical, Phys. Engrg. Sci. 369 (2011) 21642175. Google ScholarPubMed
Rossinelli, D. and Koumoutsakos, P., Vortex methods for incompressible flow simulations on the GPU. Visual Comput. 24 (2008) 699708. Google Scholar
G. Ruetsch and P. Micikevicius, Optimizing matrix transpose in cuda. NVIDIA CUDA SDK Application Note (2009).
Sbalzarini, I., Walther, J., Bergdorf, M., Hieber, S., Kotsalis, E. and Koumoutsakos, P., PPM–a highly efficient parallel particle–mesh library for the simulation of continuum systems. J. Comput. Phys. 215 (2006) 566588. Google Scholar
Schoenberg, I., Contribution to the problem of approximation of equidistant data by analytic functions. Q. Appl. Math. 4 (1946) 4599. Google Scholar
Valdez-Balderas, D., Dominguez, J., Rogers, B. and Crespo, A., Towards accelerating smoothed particle hydrodynamics simulations for free-surface flows on multi-gpu clusters. J. Parallel Distrib. Comput. 73 (2012) 14831493. Google Scholar
De Vuyst, F. and Salvarani, F., GPU-accelerated numerical simulations of the knudsen gas on time- dependent domains. Comput. Phys. Commun. 184 (2013) 532536. Google Scholar
Yokota, R., Barba, L., Narumi, T. and Yasuoka, K., Petascale turbulence simulation using a highly parallel fast multipole method. Comput. Phys. Commun. 184 (2013) 445455. Google Scholar
Zhang, Y., Cohen, J. and Owens, J.D., Fast tridiagonal solvers on the GPU. SIGPLAN Not. 45 (2010) 127136. Google Scholar