No CrossRef data available.
Published online by Cambridge University Press: 27 January 2010
In this work we describe an efficient model for the simulation of atwo-phase flow made of a gas and a granular solid. The starting point is the two-velocitytwo-pressure model of Baer and Nunziato [Int. J. Multiph. Flow16 (1986) 861–889]. The model is supplemented bya relaxation source term in orderto take into account the pressure equilibrium between the two phases andthe granular stress in the solid phase. We show that the relaxationprocess can be made thermodynamically coherent with an adequate choice of the granular stress. We then propose a numerical scheme based on a splitting approach. Each step of the time marchingalgorithm is made of two stages. In the first stage, the homogeneous convection equations are solved by a standard finite volume Rusanov scheme. In the second stage, the volume fractionis updated in order to take into account the equilibrium source term.The whole procedure is entropy dissipative.For simplified pressure laws (stiffened gas laws) we are able to prove that the approximated volumefraction stays within its natural bounds.