Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-13T06:47:56.402Z Has data issue: false hasContentIssue false

Mathematical analysis and numerical simulationof a Reynolds-Koiter model for the elastohydrodynamic journal-bearing device

Published online by Cambridge University Press:  15 May 2002

Iñigo Arregui
Affiliation:
Departamento de Matemáticas, Facultad de Informática, University of La Coruña, Campus de Elviña, s/n, 15071 La Coruña, Spain. arregui@udc.es. suceve@udc.es. carlosv@udc.es.
J. Jesús Cendán
Affiliation:
Departamento de Matemáticas, Facultad de Informática, University of La Coruña, Campus de Elviña, s/n, 15071 La Coruña, Spain. arregui@udc.es. suceve@udc.es. carlosv@udc.es.
Carlos Vázquez
Affiliation:
Departamento de Matemáticas, Facultad de Informática, University of La Coruña, Campus de Elviña, s/n, 15071 La Coruña, Spain. arregui@udc.es. suceve@udc.es. carlosv@udc.es.
Get access

Abstract

The aim of this work is to deduce the existence of solutionof a coupled problem arising in elastohydrodynamiclubrication. The lubricant pressure and concentration aremodelled by Reynolds equation, jointly with the free-boundaryElrod-Adams model in order to take into account cavitationphenomena. The bearing deformation is solution of Koitermodel for thin shells. The existence of solution to thevariational problem presents some difficulties: the coupledcharacter of the equations, the nonlinear multivaluedoperator associated to cavitation and the fact of writing theelastic and hydrodynamic equations on two different domains.In a first step, we regularize the Heaviside operator.Additional difficulty related to the differentdomains is circumvented by means of prolongation andrestriction operators, arriving to a regularized coupledproblem. This one is decoupled into elastic and hydrodynamicparts, and we prove the existence of a fixed point for theglobal operator. Estimations obtained for theregularized problem allow us to prove the existence ofsolution to the original one. Finally, a numerical method is proposed in orderto simulate a real journal-bearing device and illustrate the qualitative andquantitative properties of the solution.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

S. Alvarez, Problemas de frontera libre en teoría de lubricación. Ph.D. thesis, Universidad Complutense de Madrid (1986).
Arregui, I. and Vázquez, C., Finite element solution of a Reynolds-Koiter coupled problem for the elastic journal bearing. Comput. Methods Appl. Mech. Engrg. 190 (2001) 2051-2062. CrossRef
Bayada, G. and Chambat, M., The transition between the Stokes equation and the Reynolds equation: A mathematical proof. Appl. Math. Optim. 14 (1986) 73-93. CrossRef
Bayada, G. and Chambat, M., Sur quelques modélisations de la zone de cavitation en lubrification hydrodynamique. J. Theoret. Appl. Mech. 5 (1986) 703-729.
Bayada, G., Chambat, M. and Vázquez, C., Characteristics method for the formulation and computation of a free boundary cavitation problem. J. Comput. Appl. Math. 98 (1998) 191-212. CrossRef
Bayada, G., Durany, J. and Vázquez, C., Existence of solution for a lubrication problem in elastic journal bearing devices with thin bearing. Math. Methods Appl. Sci. 18 (1995) 255-266. CrossRef
Bernadou, M. and Ciarlet, P.G., Sur l'ellipiticité du modèle linéaire de coques de W.T. Koiter. Lecture Notes in Appl. Sci. Engrg. 34 (1976) 89-136.
Bernadou, M., Ciarlet, P.G. and Miara, B., Existence theorems for two-dimensional linear shell theories. J. Elasticity 34 (1992) 645-667.
H. Brézis, Analyse fonctionnelle. Masson, Paris (1983).
A. Cameron, Basic lubrication theory. Ellis Horwood, West Sussex (1981).
Ph. Destuynder, Modélisation des coques minces élastiques. Masson, Paris (1990).
Ph. Destuynder, M. Salaün, A mixed finite element for shell model with free edge boundary conditions. Part I: The mixed variational formulation. Comput. Methods Appl. Mech. Engrg. 120 (1995) 195-217. CrossRef
Ph. Destuynder, M. Salaün, A mixed finite element for shell model with free edge boundary conditions. Part II: The numerical scheme. Comput. Methods Appl. Mech. Engrg. 120 (1995) 219-242. CrossRef
Durany, J., García, G. and Vázquez, C., An elastohydrodynamic coupled problem between a piezoviscous Reynolds equation and a hinged plate model. RAIRO Modél. Math. Anal. Numér. 31 (1997) 495-516. CrossRef
Durany, J., García, G. and Vázquez, C., Simulation of a lubricated Hertzian contact problem under imposed load. Finite Elem. Anal. Des. 38 (2002) 645-658. CrossRef
V. Girault and P.A. Raviart, Finite element aproximation of the Navier-Stokes equations. Lecture Notes in Math. 749, Springer (1997).
Hughes, T.G., Elcoate, C.D. and Evans, H.P., A novel method for integrating first- and second-order differential equations in elastohydrodynamic lubrication for the solution of smooth isotermal, line contact problems. Internat. J. Numer. Methods Engrg. 44 (1999) 1099-1113. 3.0.CO;2-7>CrossRef
D. Kinderlehrer and G. Stampacchia, An introduction to variational inequalities and their applications. SIAM, Philadelphia (2000).
Verstappen, R., A simple numerical algorithm for elastohydrodynamic lubrication, based on a dynamic variation principle. J. Comput. Phys. 97 (1991) 460-488. CrossRef
Wu, S.R., A penalty formulation and numerical approximation of the Reynolds-Hertz problem of elastohydrodynamic lubrication. Internat. J. Engrg. Sci. 24 (1986) 1001-1013. CrossRef
Wu, S.R. and Oden, J.T., A note on applications of adaptive finite elements to elastohydrodynamic lubrication problems. Comm. Appl. Numer. Methods 3 (1987) 485-494. CrossRef