Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-28T20:19:05.505Z Has data issue: false hasContentIssue false

Mathematical modelling and numerical solution of swelling of cartilaginous tissues.Part II: Mixed-hybrid finite element solution

Published online by Cambridge University Press:  04 October 2007

Kamyar Malakpoor
Affiliation:
Korteweg-de Vries Institute for Mathematics (Faculty NWI), University of Amsterdam, Plantage Muidergracht 24, 1018 TV, Amsterdam, The Netherlands.
Enrique F. Kaasschieter
Affiliation:
Departement of Mathematics and Computer Science, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands. e.f.kaasschieter@tue.nl
Jacques M. Huyghe
Affiliation:
Faculty of Mechanical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands. j.m.r.huyghe@tue.nl
Get access

Abstract

The swelling and shrinkage of biological tissues are modelled by a four-component mixture theory [J.M. Huyghe and J.D. Janssen, Int. J. Engng. Sci.35 (1997) 793–802; K. Malakpoor, E.F. Kaasschieter and J.M. Huyghe, Mathematical modelling and numerical solution of swelling of cartilaginous tissues. Part I: Modeling of incompressible charged porous media.ESAIM: M2AN41 (2007) 661–678]. This theory results in a coupled system of nonlinear parabolic differential equations together with an algebraic constraint for electroneutrality. In this model, it is desirable to obtain accurate approximations of the fluid flow and ions flow. Such accurate approximations can be determined by the mixed finite element method. The solid displacement, fluid and ions flow and electro-chemical potentials are taken as degrees of freedom. In this article the lowest-order mixed method is discussed. This results into a first-order nonlinear algebraic equation with an indefinite coefficient matrix. The hybridization technique is then used to reduce the list of degrees of freedom and to speed up the numerical computation. The mixed hybrid finite element method is then validated for small deformations using the analytical solutions for one-dimensional confined consolidation and swelling. Two-dimensional results are shown in a swelling cylindrical hydrogel sample.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods. Springer-Verlag, Berlin-Heidelberg- New York (2002).
F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer-Verlag, Berlin-Heidelberg-New York (1991).
P.G. Ciarlet, The Finite Element Method for Elliptic Problems, Studies in Mathematics and Its Applications 4. North Holland, Amsterdam (1978).
S. Flügge, Handbuch der physik, Elastizität und plastizität. Springer-Verlag (1958).
B.X. Fraeijs de Veubeke, Displacement and equilibrium models in the finite element method, in Stress Analysis, O.C. Zienkiewicz and G. Holister Eds., John Wiley, New York (1965).
Fraeijs de, B.X. Veubeke, An analysis of the convergence of mixed finite element methods. RAIRO Anal. Numér. 11 (1977) 341354.
A.J.H. Frijns, A four-component mixture theory applied to cartilaginous tissues. Ph.D. thesis, Eindhoven University of Technology (2001).
Huyghe, J.M. and Janssen, J.D., Quadriphasic mechanics of swelling incompressibleporous media. Int. J. Engng. Sci. 35 (1997) 793802. CrossRef
Kaasschieter, E.F. and Huijben, A.J.M., Mixed-hybrid finite elements and streamline computation for the potential flow problem. Numer. Methods Partial Differ. Equat. 8 (1992) 221266. CrossRef
Malakpoor, K., Kaasschieter, E.F. and Huyghe, J.M., An analytical solution of incompressible charged porous media. Z. Angew. Math. Mech. 86 (2006) 667-681. CrossRef
Malakpoor, K., Kaasschieter, E.F. and Huyghe, J.M., Mathematical modelling and numerical solution of swelling of cartilaginous tissues. Part I: Modeling of incompressible charged porous media. ESAIM: M2AN 41 (2007) 661678. CrossRef
Nédélec, J.C., Mixed finite elements in $\mathbb{R}^3$ . Numer. Math. 35 (1980) 315. CrossRef
Nédélec, J.C., A new family of mixed finite elements in $\mathbb{R}^3$ . Numer. Math. 50 (1980) 57. CrossRef
P.A. Raviart and J.M. Thomas, A mixed finite element method for 2nd-order elliptic problems, in Mathematical Aspects of Finite Element Methods, Lecture Note in Mathematics 606, I. Galligani and E. Magenes Eds., Springer, Berlin (1997) 292–315.
J.E. Roberts and J.M. Thomas, Mixed and hybrid finite element methods, in Handbook of Numerical Analysis, Volume II: Finite Element Methods, P.G. Ciarlet and J.L. Lions Eds., North Holland, Amsterdam (1991) 523–639.
J.M. Thomas, Sur l'analyse numérique des méthodes d'éléments finis hybrides et mixtes. Ph.D. thesis, University Pierre et Marie Curie, Paris (1977).
van Loon, R., Huyghe, J.M., Wijlaars, M.W. and Baaijens, F.P.T., 3D FE implementation of an incompressible quadriphasic mixture model. Inter. J. Numer. Meth. Eng. 57 (2003) 12431258. CrossRef