Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-28T12:20:16.719Z Has data issue: false hasContentIssue false

A mixed-FEM and BEM coupling for the approximationof the scattering of thermal wavesin locally non-homogeneous media

Published online by Cambridge University Press:  16 January 2007

María-Luisa Rapún
Affiliation:
Dep. Matemática e Informática, Universidad Pública de Navarra. Campus de Arrosadía, 31006 Pamplona, Spain.
Francisco-Javier Sayas
Affiliation:
Dep. Matemática Aplicada, Universidad de Zaragoza. C.P.S., 50018 Zaragoza, Spain.
Get access

Abstract

This paper proposes and analyzes a BEM-FEM scheme to approximatea time-harmonic diffusion problem in the plane with non-constantcoefficients in a bounded area. The model is set as a Helmholtztransmission problem with adsorption and with non-constantcoefficients in a bounded domain. We reformulate the problem as afour-field system. For the temperature and the heat flux we usepiecewise constant functions and lowest order Raviart-Thomaselements associated to a triangulation approximating the boundeddomain. For the boundary unknowns we take spaces of periodicsplines. We show how to transmit information from the approximateboundary to the exact one in an efficient way and provewell-posedness of the Galerkin method. Error estimates areprovided and experimentally corroborated at the end of the work.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

D.P. Almond and P.M. Patel, Photothermal science and techniques. Chapman and Hall, London (1996).
J.-P. Aubin, Approximation of elliptic boundary-value problems. Wiley-Interscience, New York-London-Sydney (1972).
Banks, H.T., Kojima, F. and Winfree, W.P., Boundary estimation problems arising in thermal tomography. Inverse Problems 6 (1990) 897921. CrossRef
F. Brezzi and M. Fortin, Mixed and hybrid finite element methods. Springer-Verlag, New York (1991).
Brezzi, F. and Johnson, C., On the coupling of boundary integral and finite element methods. Calcolo 16 (1979) 189201. CrossRef
G. Chen and J. Zhou, Boundary element methods. Academic Press, London (1992).
M. Costabel, Symmetric methods for the coupling of finite elements and boundary elements. Boundary elements IX, Vol. 1 (Stuttgart, 1987), Comput. Mech. (1987) 411–420.
Costabel, M. and Stephan, E., A direct boundary integral equation method for transmission problems. J. Math. Anal. Appl. 106 (1985) 367413. CrossRef
Crouzeix, M. and Sayas, F.-J., Asymptotic expansions of the error of spline Galerkin boundary element methods. Numer. Math. 78 (1998) 523547. CrossRef
Garrido, F. and Salazar, A., Thermal wave scattering by spheres. J. Appl. Phys. 95 (2004) 140149. CrossRef
Gatica, G.N. and Hsiao, G.C., On the coupled BEM and FEM for a nonlinear exterior Dirichlet problem in ${\mathbb R}^2$ . Numer. Math. 61 (1992) 171214. CrossRef
G.N. Gatica and G.C. Hsiao, Boundary-field equation methods for a class of nonlinear problems. Pitman Research Notes in Mathematics Series 331, Longman Scientific and Technical, Harlow, UK (1995).
Gatica, G.N. and Meddahi, S., A dual-dual mixed formulation for nonlinear exterior transmission problems. Math. Comp. 70 (2001) 14611480. CrossRef
V. Girault and P.-A. Raviart, Finite element methods for Navier-Stokes equations. Theory and algorithms. Springer-Verlag, New York (1986).
Han, H., A new class of variational formulations for the coupling of finite and boundary element methods. J. Comput. Math. 8 (1990) 223232.
T. Hohage, M.-L. Rapún and F.-J. Sayas, Detecting corrosion using thermal measurements. Inverse Probl. (to appear).
G.C. Hsiao, The coupling of BEM and FEM – a brief review. Boundary elements X, Vol 1 (Southampton, 1988). Comput. Mech. (1988) 431–445.
Hsiao, G.C., Kopp, P. and Wendland, W.L., Galerkin, A collocation method for some integral equations of the first kind. Computing 25 (1980) 89130. CrossRef
Hsiao, G.C., Kopp, P. and Wendland, W.L., Some applications of a Galerkin-collocation method for boundary integral equations of the first kind. Math. Method. Appl. Sci. 6 (1984) 280325. CrossRef
Johnson, C. and Nédélec, J.-C., On the coupling of boundary integral and finite element methods. Math. Comp. 35 (1980) 10631079. CrossRef
Kleinman, R.E. and Martin, P.A., On single integral equations for the transmission problem of acoustics. SIAM J. Appl. Math 48 (1988) 307325. CrossRef
R. Kress, Linear integral equations. Second edition. Springer-Verlag, New York (1999).
Kress, R. and Roach, G.F., Transmission problems for the Helmholtz equation. J. Math. Phys. 19 (1978) 14331437. CrossRef
Lenoir, M., Optimal isoparametric finite elements and error estimates for domains involving curved boundaries. SIAM J. Num Anal. 23 (1986) 562580. CrossRef
A. Mandelis, Photoacoustic and thermal wave phenomena in semiconductors. North-Holland, New York (1987).
A. Mandelis, Diffusion-wave fields. Mathematical methods and Green functions. Springer-Verlag, New York (2001).
Márquez, A., Meddahi, S. and Selgas, V., A new BEM-FEM coupling strategy for two-dimensional fluid-solid interaction problems. J. Comput. Phys. 199 (2004) 205220. CrossRef
W. McLean, Strongly elliptic systems and boundary integral equations. Cambridge University Press, Cambridge (2000).
Meddahi, S., A mixed-FEM and BEM coupling for a two-dimensional eddy current problem. Numer. Funct. Anal. Optim. 22 (2001) 127141. CrossRef
Meddahi, S. and Márquez, A., A combination of spectral and finite elements for an exterior problem in the plane. Appl. Numer. Math. 43 (2002) 275295. CrossRef
Meddahi, S. and Sayas, F.-J., A fully discrete BEM-FEM for the exterior Stokes problem in the plane. SIAM J. Numer. Anal. 37 (2000) 20822102. CrossRef
Meddahi, S. and Sayas, F.-J., Analysis of a new BEM-FEM coupling for two-dimensional fluid-solid interaction. Numer. Methods Partial Differ. Equ. 21 (2005) 10171042. CrossRef
Meddahi, S. and Selgas, V., A mixed-FEM and BEM coupling for a three-dimensional eddy current problem. ESAIM: M2AN 37 (2003) 291318. CrossRef
Meddahi, S., Valdés, J., Menéndez, O. and Pérez, P., On the coupling of boundary integral and mixed finite element methods. J. Comput. Appl. Math. 69 (1996) 113124. CrossRef
Meddahi, S., Márquez, A. and Selgas, V., Computing acoustic waves in an inhomogeneous medium of the plane by a coupling of spectral and finite elements. SIAM J. Numer. Anal. 41 (2003) 17291750. CrossRef
S.G. Mikhlin, Mathematical Physics, an advanced course. North-Holland, Amsterdam-London (1970).
Nicolaides, L. and Mandelis, A., Image-enhanced thermal-wave slice diffraction tomography with numerically simulated reconstructions. Inverse problems 13 (1997) 13931412. CrossRef
M.-L. Rapún, Numerical methods for the study of the scattering of thermal waves. Ph.D. Thesis, University of Zaragoza, (2004). In Spanish.
Rapún, M.-L. and Sayas, F.-J., Boundary integral approximation of a heat diffusion problem in time-harmonic regime. Numer. Algorithms 41 (2006) 127160. CrossRef
Sayas, F.-J., A nodal coupling of finite and boundary elements. Numer. Methods Partial Differ. Equ. 19 (2003) 555570. CrossRef
Terrón, J.M., Salazar, A. and Sánchez-Lavega, A., General solution for the thermal wave scattering in fiber composites. J. Appl. Phys. 91 (2002) 10871098. CrossRef
Torres, R.H. and Welland, G.V., The Helmholtz equation and transmission problems with Lipschitz interfaces. Indiana Univ. Math. J. 42 (1993) 14571485. CrossRef
von Petersdorff, T., Boundary integral equations for mixed Dirichlet, Neumann and transmission problems. Math. Methods Appl. Sci. 11 (1989) 185213. CrossRef
A. Ženišek, Nonlinear elliptic and evolution problems and their finite element approximations. Academic Press, London (1990).
Zlámal, M., Curved elements in the finite element method I. SIAM J. Numer. Anal. 10 (1973) 229240. CrossRef
Zlámal, M., Curved elements in the finite element method II. SIAM J. Numer. Anal. 11 (1974) 347362. CrossRef