Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-14T20:58:21.641Z Has data issue: false hasContentIssue false

A modified quasi-boundary value method for the backward time-fractional diffusion problem

Published online by Cambridge University Press:  20 January 2014

Ting Wei
Affiliation:
School of Mathematics and Statistics, Lanzhou University, P.R. China. tingwei@lzu.edu.cn
Get access

Abstract

In this paper, we consider a backward problem for a time-fractional diffusion equation with variable coefficients in a general bounded domain. That is to determine the initial data from a noisy final data. Based on a series expression of the solution, a conditional stability for the initial data is given. Further, we propose a modified quasi-boundary value regularization method to deal with the backward problem and obtain two kinds of convergence rates by using an a priori regularization parameter choice rule and an a posteriori regularization parameter choice rule. Numerical examples in one-dimensional and two-dimensional cases are provided to show the effectiveness of the proposed methods.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

K.A. Ames and J.F. Epperson, A kernel-based method for the approximate solution of backward parabolic problems. SIAM J. Numer. Anal. (1997) 1357–1390.
Ames, K.A. and Payne, L.E., Asymptotic behavior for two regularizations of the Cauchy problem for the backward heat equation. Math. Models Methods Appl. Sci. 8 (1998) 187. Google Scholar
Berkowitz, B., Scher, H. and Silliman, S.E., Anomalous transport in laboratory-scale, heterogeneous porous media. Water Resour. Res. 36 (2000) 149158. Google Scholar
Cheng, J., Nakagawa, J., Yamamoto, M. and Yamazaki, T., Uniqueness in an inverse problem for a one-dimensional fractional diffusion equation. Inverse Problems 25 (2009) 115002. Google Scholar
Chi, G., Li, G. and Jia, X., Numerical inversions of a source term in the fade with a dirichlet boundary condition using final observations. Comput. Math. Appl. 62 (2011) 16191626. Google Scholar
G.W. Clark and S.F. Oppenheimer, Quasireversibility methods for non-well-posed problems Electron. J. Differ. equ. (1994) 1–9.
Denche, M. and Bessila, K., A modified quasi-boundary value method for ill-posed problems. J. Math. Anal. Appl. 301 (2005) 419426. Google Scholar
Feng, X.L., Eldén, L. and Fu, C.L., A quasi-boundary-value method for the cauchy problem for elliptic equations with nonhomogeneous neumann data. J. Inverse Ill-Posed Probl. 18 (2010) 617645. Google Scholar
Hào, D.N., Duc, N.V. and Lesnic, D., A non-local boundary value problem method for the Cauchy problem for elliptic equations. Inverse Probl. 25 (2009) 055002. Google Scholar
Hào, D.N., Duc, N.V. and Lesnic, D., Regularization of parabolic equations backward in time by a non-local boundary value problem method. IMA J. Appl. Math. 75 (2010) 291315. Google Scholar
Hào, D.N., Duc, N.V. and Sahli, H., A non-local boundary value problem method for parabolic equations backward in time. J. Math. Anal. Appl. 345 (2008) 805815. Google Scholar
Jiang, Y.J. and Ma, J.T., High-order finite element methods for time-fractional partial differential equations. J. Comput. Appl. Math. 235 (2011) 32853290. Google Scholar
B.T. Jin and W. Rundell, An inverse problem for a one-dimensional time-fractional diffusion problem. Inverse Probl. 28 (2012).
Kirkup, S.M. and Wadsworth, M., Solution of inverse diffusion problems by operator-splitting methods. Appl. Math. Modelling 26 (2002) 10031018. Google Scholar
Liu, J.J. and Yamamoto, M., A backward problem for the time-fractional diffusion equation. Appl. Anal. 89 (2010) 17691788. Google Scholar
Luchko, Y., Some uniqueness and existence results for the initial-boundary-value problems for the generalized time-fractional diffusion equation. Comput. Math. Appl. 59 (2010) 17661772. Google Scholar
Luchko, Y., Maximum principle and its application for the time-fractional diffusion equations. Fract. Calc. Appl. Anal. 14 (2011) 110124. Google Scholar
Mainardi, F., Pagnini, G. and Gorenflo, R., Some aspects of fractional diffusion equations of single and distributed order. Appl. Math. Comput. 187 (2007) 295305. Google Scholar
Metzler, R. and Klafter, J., The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339 (2000) 177. Google Scholar
Metzler, R. and Klafter, J., Subdiffusive transport close to thermal equilibrium: From the Langevin equation to fractional diffusion. Phys. Rev. E 61 (2000) 63086311. Google Scholar
Murio, D.A., Stable numerical solution of a fractional-diffusion inverse heat conduction problem. Comput. Math. Appl. 53 (2007) 14921501. Google Scholar
Murio, D.A., Implicit finite difference approximation for time fractional diffusion equations. Comput. Math. Appl. 56 (2008) 11381145. Google Scholar
Murio, D.A., Time fractional IHCP with Caputo fractional derivatives. Comput. Math. Appl. 56 (2008) 23712381. Google Scholar
Murio, D.A., Stable numerical evaluation of Grünwald-Letnikov fractional derivatives applied to a fractional ihcp. Inverse Probl. Sci. Engrg. 17 (2009) 229243. Google Scholar
Murio, D.A. and Mejía, C.E., Source terms identification for time fractional diffusion equation. Revista Colombiana de Matemáticas 42 (2008) 2546. Google Scholar
Murio, D.A., Implicit finite difference approximation for time fractional diffusion equations. Comput. Math. Appl. 56 (2008) 11381145. Google Scholar
I. Podlubny, Fractional differential equations, in vol. 198 of Math. Sci. Eng. Academic Press Inc., San Diego, CA (1999).
I. Podlubny and M. Kacenak, Mittag-leffler function. The MATLAB routine, available at http://www.mathworks.com/matlabcentral/fileexchange (2006).
Pollard, H., The completely monotonic character of the mittag-leffler function Eα( − x). Bull. Amer. Math. Soc. 54 (1948) 11151116. Google Scholar
Qian, Z., Optimal modified method for a fractional-diffusion inverse heat conduction problem. Inverse Probl. Sci. Engrg. 18 (2010) 521533. Google Scholar
W. Rundell, X. Xu and L. H. Zuo, The determination of an unknown boundary condition in a fractional diffusion equation. Appl. Anal. http://dx.doi.org/10.1080/00036811.2012.686605.
Sakamoto, K. and Yamamoto, M., Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl. 382 (2011) 426447. Google Scholar
Scalas, E., Gorenflo, R. and Mainardi, F., Fractional calculus and continuous-time finance. Physica A 284 (2000) 376384. Google Scholar
Scherer, R., Kalla, S.L., Boyadjiev, L. and Al-Saqabi, B., Numerical treatment of fractional heat equations. Appl. Numer. Math. 58 (2008) 12121223. Google Scholar
Showalter, R.E., The final value problem for evolution equations. J. Math. Anal. Appl. 47 (1974) 563572. Google Scholar
Showalter, R.E., Cauchy problem for hyper-parabolic partial differential equations. North-Holland Math. Stud. 110 (1985) 421425. Google Scholar
Sokolov, I.M. and Klafter, J., From diffusion to anomalous diffusion: A century after Einsteins Brownian motion. Chaos 15 (2005) 17. Google Scholar
Wei, H., Chen, W., Sun, H.G. and Li, X.C., A coupled method for inverse source problem of spatial fractional anomalous diffusion equations. Inverse Probl. Sci. Engrg. 18 (2010) 945956. Google Scholar
Wyss, W., The fractional diffusion equation. J. Math. Phys. 27 (1986) 27822785. Google Scholar
Yang, M. and Liu, J.J., Solving a final value fractional diffusion problem by boundary condition regularization. Appl. Numer. Math. 66 (2013) 4558. Google Scholar
Zhang, P. and Liu, F.. Implicit difference approximation for the time fractional diffusion equation. J. Appl. Math. Comput. 22 (2006) 8799. Google Scholar
Zhang, Y. and Xu, X., Inverse source problem for a fractional diffusion equation. Inverse Probl. 27 (2011) 035010. Google Scholar
Zheng, G.H. and Wei, T., Spectral regularization method for a Cauchy problem of the time fractional advection-dispersion equation. J. Comput. Appl. Math. 233 (2010) 26312640. Google Scholar
Zheng, G.H. and Wei, T., A new regularization method for a Cauchy problem of the time fractional diffusion equation. Advances Comput. Math. 36 (2012) 377398. Google Scholar
Zheng, G.H. and Wei, T., Two regularization methods for solving a riesz-feller space-fractional backward diffusion problem. Inverse Probl. 26 (2010) 115017. Google Scholar
Zhuang, P. and Liu, F., Implicit difference approximation for the time fractional diffusion equation. J. Appl. Math. Comput. 22 (2006) 8799. Google Scholar