Published online by Cambridge University Press: 15 April 2002
Our aim here is to study the thermal diffusion phenomenon in a forced convective flow. A system of nonlinear parabolic equations governs the evolution of the mass fractions in multicomponent mixtures. Some existence and uniqueness results are given under suitable conditions onstate functions. Then, we present a numerical scheme based on a "mixed finite element"method adapted to a finite volume scheme, of which we give numerical analysis. In a last part, we apply an homogenization technique to the studied equations in order to obtain an efficient modelling of Soret effect and adsorption in a porous medium at a macroscopic scale.