Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T08:50:14.588Z Has data issue: false hasContentIssue false

Numerical precision for differential inclusionswith uniqueness

Published online by Cambridge University Press:  15 August 2002

Jérôme Bastien
Affiliation:
UMR 5585 CNRS, MAPLY, Laboratoire de mathématiques appliquées de Lyon, Université Claude Bernard Lyon I, 69622 Villeurbanne Cedex, France. jerome.bastien@utbm.fr. Laboratoire Mécatronique 3M, Université de Technologie de Belfort-Montbéliard, 90010 Belfort Cedex, France.
Michelle Schatzman
Affiliation:
UMR 5585 CNRS, MAPLY, Laboratoire de mathématiques appliquées de Lyon, Université Claude Bernard Lyon I, 69622 Villeurbanne Cedex, France.
Get access

Abstract

In this article, we show the convergence of a class of numerical schemes for certain maximal monotone evolution systems; a by-product of this resultsis the existence of solutions in cases which had not been previouslytreated. The order of these schemes is 1/2 in general and 1 when the only non Lipschitz continuous term is the subdifferential of the indicatrix of a closed convex set. In the case of Prandtl'srheological model, our estimates in maximum norm do not dependon spatial dimension.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bastien, J., Schatzman, M. and Lamarque, C.-H., Study of some rheological models with a finite number of degrees of freedom. Eur. J. Mech. A Solids 19 (2000) 277-307. CrossRef
Bastien, J., Schatzman, M. and Lamarque, C.-H., Study of an elastoplastic model with an infinite number of internal degrees of freedom. Eur. J. Mech. A Solids 21 (2002) 199-222. CrossRef
J. Bastien, Étude théorique et numérique d'inclusions différentielles maximales monotones. Applications à des modèles élastoplastiques. Ph.D. Thesis, Université Lyon I (2000). number: 96-2000.
Brezis, H., Perturbations non linéaires d'opérateurs maximaux monotones. C. R. Acad. Sci. Paris Sér. A-B 269 (1969) 566-569.
Brezis, H., Problèmes unilatéraux. J. Math. Pures Appl. 51 (1972) 1-168.
H. Brezis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland Publishing Co., Amsterdam (1973). North-Holland Mathematics Studies, No. 5. Notas de Matemática (50).
Crandall, M.G. and Evans, L.C., On the relation of the operator tial/tials + tial/tialτ to evolution governed by accretive operators. Israel J. Math. 21 (1975) 261-278. CrossRef
R. Dautray and J.-L. Lions, Analyse mathématique et calcul numérique pour les sciences et les techniques. Vol. 8. Masson, Paris (1988). Évolution: semi-groupe, variationnel., Reprint of the edition of 1985.
Dontchev, A.L. and Farkhi, E.M., Error estimates for discretized differential inclusion. Computing 41 (1989) 349-358. CrossRef
Dontchev, A.L. and Lempio, F., Difference methods for differential inclusions: a survey. SIAM Rev. 34 (1992) 263-294. CrossRef
Freedman, M.A., A random walk for the solution sought: remark on the difference scheme approach to nonlinear semigroups and evolution operators. Semigroup Forum 36 (1987) 117-126. CrossRef
U. Hornung, ADI-methods for nonlinear variational inequalities of evolution. Iterative solution of nonlinear systems of equations. Lecture Notes in Math. 953, Springer, Berlin-New York (1982) 138-148.
Kartsatos, A.G., The existence of a method of lines for evolution equations involving maximal monotone operators and locally defined perturbations. Panamer. Math. J. 1 (1991) 17-27.
Lempio, F. and Veliov, V., Discrete approximations of differential inclusions. Bayreuth. Math. Schr. 54 (1998) 149-232.
J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications. Vol. 1. Dunod, Paris (1968).
Lippold, G., Error estimates for the implicit Euler approximation of an evolution inequality. Nonlinear Anal. 15 (1990) 1077-1089. CrossRef
Veliov, V., Second-order discrete approximation to linear differential inclusions. SIAM J. Numer. Anal. 29 (1992) 439-451. CrossRef
E. Zeidler, Nonlinear functional analysis and its applications. II/B. Springer-Verlag, New York (1990). Nonlinear monotone operators, Translated from german by the author and Leo F. Boron.