Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-28T12:41:06.607Z Has data issue: false hasContentIssue false

On the accuracy of Reissner–Mindlinplate modelfor stress boundary conditions

Published online by Cambridge University Press:  21 June 2006

Sheng Zhang*
Affiliation:
Department of Mathematics, Wayne State University, Detroit, Michigan 48202, USA. sheng@math.wayne.edu
Get access

Abstract

For a plate subject to stress boundary condition, the deformationdetermined by the Reissner–Mindlin plate bending model could bebending dominated, transverse shear dominated, or neither(intermediate), depending on the load. We show that theReissner–Mindlin model has a wider range of applicability thanthe Kirchhoff–Love model, but it does not always converge to theelasticity theory. In the case of bending domination, both the twomodels are accurate. In the case of transverse shear domination,the Reissner–Mindlin model is accurate but the Kirchhoff–Lovemodel totally fails. In the intermediate case, while theKirchhoff–Love model fails, the Reissner–Mindlin solution alsohas a relative error comparing to the elasticity solution, whichdoes not decrease when the plate thickness tends to zero. We alsoshow that under the conventional definition of the resultantloading functional, the well known shear correction factor 5/6in the Reissner–Mindlin model should be replaced by 1.Otherwise, the range of applicability of the Reissner–Mindlinmodel is not wider than that of Kirchhoff–Love's.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

S.M. Alessandrini, D.N. Arnold, R.S. Falk and A.L. Madureira, Derivation and justification of plate models by variational methods, Centre de Recherches Math., CRM Proc. Lecture Notes (1999).
Arnold, D.N. and Falk, R.S., Asymptotic analysis of the boundary layer for the Reissner-Mindlin plate model. SIAM J. Math. Anal. 27 (1996) 486514. CrossRef
D.N. Arnold and A. Mardureira, Asymptotic estimates of hierarchical modeling. Math. Mod. Meth. Appl. S. 13 (2003).
D.N. Arnold, A. Mardureira and S. Zhang, On the range of applicability of the Reissner–Mindlin and Kirchhoff–Love plate bending models, J. Elasticity 67 (2002) 171–185. CrossRef
J. Bergh and J. Lofstrom, Interpolation space: An introduction, Springer-Verlag (1976).
C. Chen, Asymptotic convergence rates for the Kirchhoff plate model, Ph.D. Thesis, Pennsylvania State University (1995).
P.G. Ciarlet, Mathematical elasticity, Vol II: Theory of plates. North-Holland (1997).
M. Dauge, I. Djurdjevic and A. Rössle, Full Asymptotic expansions for thin elastic free plates, C.R. Acad. Sci. Paris Sér. I. 326 (1998) 1243–1248. CrossRef
Dauge, M., Gruais, I. and Rössle, A., The influence of lateral boundary conditions on the asymptotics in thin elastic plates. SIAM J. Math. Anal. 31 (1999) 305345. CrossRef
M. Dauge, E. Faou and Z. Yosibash, Plates and shells: Asymptotic expansions and hierarchical models, in Encyclopedia of computational mechanics, E. Stein, R. de Borst, T.J.R. Hughes Eds., John Wiley & Sons, Ltd. (2004).
K.O. Friedrichs and R.F. Dressler, A boundary-layer theory for elastic plates. Comm. Pure Appl. Math. XIV (1961) 1–33.
T.J.R. Hughes, The finite element method: Linear static and dynamic finite element analysis. Prentice-Hall, Englewood Cliffs (1987).
Koiter, W.T., On the foundations of linear theory of thin elastic shells. Proc. Kon. Ned. Akad. Wetensch. B73 (1970) 169195.
A.E.H. Love, A treatise on the mathematical theory of elasticity. Cambridge University Press (1934).
Morgenstern, D., Herleitung der Plattentheorie aus der dreidimensionalen Elastizitatstheorie. Arch. Rational Mech. Anal. 4 (1959) 145152. CrossRef
P.M. Naghdi, The theory of shells and plates, in Handbuch der Physik, Springer-Verlag, Berlin, VIa/2 (1972) 425–640.
Prager, W. and Synge, J.L., Approximations in elasticity based on the concept of function space. Q. J. Math. 5 (1947) 241269.
Reissner, E., Reflections on the theory of elastic plates. Appl. Mech. Rev. 38 (1985) 14531464. CrossRef
Rössle, A., Bischoff, M., Wendland, W. and Ramm, E., On the mathematical foundation of the (1,1,2)-plate model. Int. J. Solids Structures 36 (1999) 21432168. CrossRef
J. Sanchez-Hubert and E. Sanchez-Palencia, Coques élastiques minces: Propriétés asymptotiques, Recherches en mathématiques appliquées, Masson, Paris (1997).
B. Szabó, I. Babuska, Finite Element analysis. Wiley, New York (1991).
Wan, F.Y.M., Stress boundary conditions for plate bending. Int. J. Solids Structures 40 (2003) 41074123. CrossRef
S. Zhang, Equivalence estimates for a class of singular perturbation problems. C.R. Acad. Sci. Paris, Ser. I 342 (2006) 285–288.