Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T22:04:05.909Z Has data issue: false hasContentIssue false

On the connection between some Riemann-solver free approachesto the approximation of multi-dimensional systems of hyperbolicconservation laws

Published online by Cambridge University Press:  15 December 2004

Tim Kröger
Affiliation:
RWTH Aachen, Institut für Geometrie und Praktische Mathematik, Templergraben 55, 52056 Aachen, Germany. kroeger@igpm.rwth-aachen.de.; noelle@igpm.rwth-aachen.de.
Sebastian Noelle
Affiliation:
RWTH Aachen, Institut für Geometrie und Praktische Mathematik, Templergraben 55, 52056 Aachen, Germany. kroeger@igpm.rwth-aachen.de.; noelle@igpm.rwth-aachen.de.
Susanne Zimmermann
Affiliation:
ETH Zentrum, Seminar für Angewandte Mathematik, 8092 Zürich, Switzerland.
Get access

Abstract

In this paper, we present some interesting connections between anumber of Riemann-solver free approaches to the numerical solutionof multi-dimensional systems of conservation laws. As a main part,we present a new and elementary derivation of Fey's Method ofTransport (MoT) (respectively the second author's ICE version ofthe scheme) and the state decompositions which form the basis of it.The only tools that we use are quadrature rules applied to themoment integral used in the gas kinetic derivation of the Eulerequations from the Boltzmann equation, to the integration in timealong characteristics and to space integrals occurring in the finitevolume formulation. Thus, we establish a connection between theMoT approach and the kinetic approach. Furthermore,Ostkamp's equivalence result between her evolution Galerkin schemeand the method of transport is lifted up from the level ofdiscretizations to the level of exact evolution operators,introducing a new connection between the MoT and theevolution Galerkin approach. At the same time, we clarifysome important differences between these two approaches.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bouchut, F., Construction of BGK models with a family of kinetic entropies for a given system of conservation laws. J. Statist. Phys. 95 (1999) 113170. CrossRef
Brenier, Y., Average multivalued solutions for scalar conservation laws. SIAM J. Numer. Anal. 21 (1984) 10131037. CrossRef
D.S. Butler, The numerical solution of hyperbolic systems of partial differential equations in three independent variables, in Proc. Roy. Soc. 255A (1960) 232–252.
C. Cercignani, The Boltzmann equation and its applications. Springer-Verlag, New York (1988).
R. Courant and D. Hilbert, Methods of Mathematical Physics II. Interscience Publishers, New York (1962).
S.M. Deshpande, A second-order accurate kinetic-theory-based method for inviscid compressible flows. NASA Technical Paper 2613 (1986).
Deconinck, H., Roe, P.L. and Struijs, R., A multidimensional generalization of Roe's flux difference splitter for the Euler equations. Comput. Fluids 22 (1993) 215222. CrossRef
M. Fey, Ein echt mehrdimensionales Verfahren zur Lösung der Eulergleichungen. Dissertation, ETH Zürich, Switzerland (1993).
Multidimensional, M. Fey upwinding. I. The method of transport for solving the Euler equations. J. Comput. Phys. 143 (1998) 159180.
Multidimensional, M. Fey upwinding. II. Decomposition of the Euler equations into advection equations. J. Comput. Phys. 143 (1998) 181199.
M. Fey, S. Noelle and C.v. Törne, The MoT-ICE: a new multi-dimensional wave-propagation-algorithm based on Fey's method of transport. With application to the Euler- and MHD-equations. Int. Ser. Numer. Math. 140, 141 (2001) 373–380.
E. Godlewski and P.A. Raviart, Numerical approximation of hyperbolic systems of conservation laws. Springer-Verlag, New York (1996).
A. Jeffrey and T. Taniuti, Non-linear wave propagation. Academic Press, New York (1964).
M. Junk, A kinetic approach to hyperbolic systems and the role of higher order entropies. Int. Ser. Numer. Math. 140, 141 (2001) 583–592.
M. Junk and J. Struckmeier, Consistency analysis of mesh-free methods for conservation laws, Mitt. Ges. Angew. Math. Mech. 24, No. 2, 99 (2001).
T. Kröger, Multidimensional systems of hyperbolic conservation laws, numerical schemes, and characteristic theory. Dissertation, RWTH Aachen, Germany (2004).
T. Kröger and S. Noelle, Numerical comparison of the method of transport to a standard scheme. Comp. Fluids (2004) (doi: 10.1016/j.compfluid.2003.12.002) (in print). CrossRef
D. Kröner, Numerical schemes for conservation laws. Wiley Teubner, Stuttgart (1997).
R.J. LeVeque, Numerical methods for conservation laws. Birkhäuser, Basel (1990).
Lin, P., Morton, K.W. and Süli, E., Characteristic Galerkin schemes for scalar conservation laws in two and three space dimensions. SIAM J. Numer. Anal. 34 (1997) 779796. CrossRef
Lukáčová-Medviďová, M., Morton, K.W. and Warnecke, G., Evolution Galerkin methods for hyperbolic systems in two space dimensions. Math. Comp. 69 (2000) 13551384. CrossRef
Lukáčová-Medviďová, M., Morton, K.W. and Warnecke, G., Finite volume evolution Galerkin (FVEG) methods hyperbolic systems. SIAM J. Sci. Comp. 26 (2004) 130. CrossRef
Lukáčová-Medviďová, M., Saibertová, J. and Warnecke, G., Finite volume evolution Galerkin methods for nonlinear hyperbolic systems. J. Comp. Phys. 183 (2002) 533562. CrossRef
Noelle, S., The MoT-ICE: a new high-resolution wave-propagation algorithm for multidimensional systems of conservation laws based on Fey's Method of Transport. J. Comput. Phys. 164 (2000) 283334. CrossRef
S. Ostkamp, Multidimensional Characteristic Galerkin Schemes and Evolution Operators for Hyperbolic Systems. Dissertation, Hannover University, Germany (1995).
Ostkamp, S., Multidimensional characteristic Galerkin methods for hyperbolic systems. Math. Meth. Appl. Sci. 20 (1997) 11111125. 3.0.CO;2-1>CrossRef
Perthame, B., Boltzmann type schemes for gas dynamics and the entropy property. SIAM J. Numer. Anal. 27 (1990) 14051421. CrossRef
Perthame, B., Second-order Boltzmann schemes for compressible Euler equations in one and two space dimensions. SIAM J. Numer. Anal. 29 (1992) 119. CrossRef
P. Prasad, Nonlinear hyperbolic waves in multi-dimensions. Chapman & Hall/CRC, New York (2001).
Quirk, J., A contribution to the great Riemann solver debate. Int. J. Numer. Meth. Fluids 18 (1994) 555574. CrossRef
Roe, P., Discrete models for the numerical analysis of time-dependent multidimensional gas dynamics. J. Comput. Phys. 63 (1986) 458476. CrossRef
Steger, J.L. and Warming, R.F., Flux vector splitting of the inviscid gasdynamic equations with application to finite-difference methods. J. Comput. Phys. 40 (1981) 263293. CrossRef
C.v. Törne, MOTICE – Adaptive, Parallel Numerical Solution of Hyperbolic Conservation Laws. Dissertation, Bonn University, Germany. Bonner Mathematische Schriften, No. 334 (2000).
E. Toro, Riemann solvers and numerical methods for fluid dynamics. Second edition, Springer, Berlin (1999).
K. Xu, Gas-kinetic schemes for unsteady compressible flow simulations. Lect. Ser. Comp. Fluid Dynamics, VKI report 1998-03 (1998).
Zimmermann, S., The method of transport for the Euler equations written as a kinetic scheme. Int. Ser. Numer. Math. 141 (2001) 9991008.
S. Zimmermann, Properties of the Method of Transport for the Euler Equations. Dissertation, ETH Zürich, Switzerland (2001).