Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-14T16:56:30.495Z Has data issue: false hasContentIssue false

On the effect of temperature and velocity relaxation in two-phase flow models

Published online by Cambridge University Press:  26 October 2011

Pedro José Martínez Ferrer
Affiliation:
ENSMA, Teleport 2 - 1 avenue Clement Ader, 86961 Futuroscope Chasseneuil cedex, France. pedro.martinezferrer@ensma.fr ETSIA, Plaza de Cardenal Cisneros, 3, 28040 Madrid, Spain.
Tore Flåtten
Affiliation:
SINTEF Energy Research, P.O. Box 4761 Sluppen, 7465 Trondheim, Norway. Tore.Flatten@sintef.no; stm@pvv.org
Svend Tollak Munkejord
Affiliation:
SINTEF Energy Research, P.O. Box 4761 Sluppen, 7465 Trondheim, Norway. Tore.Flatten@sintef.no; stm@pvv.org
Get access

Abstract

We study a two-phase pipe flow model with relaxation terms in the momentum and energy equations, driving the model towards dynamic and thermal equilibrium. These equilibrium states are characterized by the velocities and temperatures being equal in each phase. For each of these relaxation processes, we consider the limits of zero and infinite relaxation times. By expanding on previously established results, we derive a formulation of the mixture sound velocity for the thermally relaxed model. This allows us to directly prove a subcharacteristic condition; each level of equilibrium assumption imposed reduces the propagation velocity of pressure waves. Furthermore, we show that each relaxation procedure reduces the mixture sound velocity with a factor that is independent of whether the other relaxation procedure has already been performed. Numerical simulations indicate that thermal relaxation in the two-fluid model has negligible impact on mass transport dynamics. However, the velocity difference of sonic propagation in the thermally relaxed and unrelaxed two-fluid models may significantly affect practical simulations.

Type
Research Article
Copyright
© EDP Sciences, SMAI 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abgrall, R. and Saurel, R., Discrete equations for physical and numerical compressible multiphase mixtures. J. Comput. Phys. 186 (2003) 361396. CrossRef
Baer, M.R. and Nunziato, J.W., A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials. Int. J. Multiphase Flow 12 (1986) 861889. CrossRef
Baudin, M., Coquel, F. and Tran, Q.H., A semi-implicit relaxation scheme for modeling two-phase flow in a pipeline. SIAM J. Sci. Comput. 27 (2005) 914936. CrossRef
Baudin, M., Berthon, C., Coquel, F., Masson, R. and Tran, Q.H., A relaxation method for two-phase flow models with hydrodynamic closure law. Numer. Math. 99 (2005) 411440. CrossRef
Bendiksen, K.H., Malnes, D., Moe, R. and Nuland, S., The dynamic two-fluid model OLGA: theory and application. SPE Prod. Eng. 6 (1991) 171180. CrossRef
Bestion, D., The physical closure laws in the CATHARE code. Nucl. Eng. Des. 124 (1990) 229245. CrossRef
Chang, C.-H. and Liou, M.-S., A robust and accurate approach to computing compressible multiphase flow: Stratified flow model and AUSM+-up scheme. J. Comput. Phys. 225 (2007) 850873. CrossRef
Chen, G.-Q., Levermore, C.D. and Liu, T.-P., Hyperbolic conservation laws with stiff relaxation terms and entropy. Commun. Pure Appl. Math. 47 (1994) 787830. CrossRef
Cinnella, P., Roe-type schemes for dense gas flow computations. Comput. Fluids 35 (2006) 12641281. CrossRef
Coquel, F., El Amine, K., Godlewski, E., Perthame, B. and Rascle, P., A numerical method using upwind schemes for the resolution of two-phase flows. J. Comput. Phys. 136 (1997) 272288. CrossRef
Coquel, F., Nguyen, Q.L., Postel, M. and Tran, Q.H., Entropy-satisfying relaxation method with large time-steps for Euler IBVPs. Math. Comput. 79 (2010) 14931533. CrossRef
Evje, S. and Fjelde, K.K., Relaxation schemes for the calculation of two-phase flow in pipes. Math. Comput. Modelling 36 (2002) 535567. CrossRef
Evje, S. and Flåtten, T., Hybrid flux-splitting schemes for a common two-fluid model. J. Comput. Phys. 192 (2003) 175210. CrossRef
Evje, S. and Flåtten, T., Hybrid central-upwind schemes for numerical resolution of two-phase flows. ESAIM: M2AN 39 (2005) 253273. CrossRef
Evje, S. and Flåtten, T., On the wave structure of two-phase flow models. SIAM J. Appl. Math. 67 (2007) 487511. CrossRef
Flåtten, T. and Munkejord, S.T., The approximate Riemann solver of Roe applied to a drift-flux two-phase flow model. ESAIM: M2AN 40 (2006) 735764. CrossRef
Flåtten, T., Morin, A. and Munkejord, S.T., Wave propagation in multicomponent flow models. SIAM J. Appl. Math. 70 (2010) 28612882. CrossRef
Flåtten, T., Morin, A. and Munkejord, S.T., On solutions to equilibrium problems for systems of stiffened gases. SIAM J. Appl. Math. 71 (2011) 4167. CrossRef
Guillard, H. and Duval, F., Darcy la, Aw for the drift velocity in a two-phase flow model. J. Comput. Phys. 224 (2007) 288313. CrossRef
Jin, S. and Xin, Z., The relaxation schemes for systems of conservation laws in arbitrary space dimensions. Commun. Pure Appl. Math. 48 (1995) 235276. CrossRef
Karlsen, K.H., Klingenberg, C. and Risebro, N.H., A relaxation scheme for conservation laws with a discontinuous coefficient. Math. Comput. 73 (2004) 12351259. CrossRef
R.J. LeVeque, Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, Cambridge, UK (2002).
Liu, T.-P., Hyperbolic conservation laws with relaxation. Commun. Math. Phys. 108 (1987) 153175. CrossRef
P.J. Martínez Ferrer, Numerical and mathematical analysis of a five-equation model for two-phase flow. Master's thesis, SINTEF Energy Research, Trondheim, Norway (2010). Available from http://www.sintef.no/Projectweb/CO2-Dynamics/Publications/.
Masella, J.M., Tran, Q.H., Ferre, D. and Pauchon, C., Transient simulation of two-phase flows in pipes. Int. J. Multiphase Flow 24 (1998) 739755. CrossRef
Munkejord, S.T., Partially-reflecting boundary conditions for transient two-phase flow. Commun. Numer. Meth. Eng. 22 (2007) 781795. CrossRef
Munkejord, S.T., Evje, S. and Flåtten, T., MUSTA, A scheme for a nonconservative two-fluid model. SIAM J. Sci. Comput. 31 (2009) 25872622. CrossRef
Murrone, A. and Guillard, H., A five equation reduced model for compressible two phase flow problems. J. Comput. Phys. 202 (2005) 664698. CrossRef
R. Natalini, Recent results on hyperbolic relaxation problems. Analysis of systems of conservation laws, in Chapman & Hall/CRC Monogr. Surv. Pure Appl. Math. 99. Chapman & Hall/CRC, Boca Raton, FL (1999) 128–198.
Paillère, H., Corre, C. and Carcía Gascales, J.R., On the extension of the AUSM+ scheme to compressible two-fluid models. Comput. Fluids 32 (2003) 891916. CrossRef
Pareschi, L. and Russo, G., Implicit-explicit Runge-Kutta schemes and applications to hyperbolic systems with relaxation. J. Sci. Comput. 25 (2005) 129155.
V.H. Ransom, Faucet Flow, in Numerical Benchmark Tests, Multiph. Sci. Technol. 3, edited by G.F. Hewitt, J.M. Delhaye and N. Zuber. Hemisphere-Springer, Washington, USA (1987) 465–467.
Roe, P.L., Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 43 (1981) 357372. CrossRef
Saurel, R. and Abgrall, R., A multiphase Godunov method for compressible multifluid and multiphase flows. J. Comput. Phys. 150 (1999) 425467. CrossRef
Saurel, R., Petitpas, F. and Abgrall, R., Modelling phase transition in metastable liquids: application to cavitating and flashing flows. J. Fluid Mech. 607 (2008) 313350. CrossRef
Stewart, H.B. and Wendroff, B., Two-phase flow: models and methods. J. Comput. Phys. 56 (1984) 363409. CrossRef
Stuhmiller, J.H., The influence of interfacial pressure forces on the character of two-phase flow model equations. Int. J. Multiphase Flow 3 (1977) 551560. CrossRef
Tiselj, I. and Petelin, S., Modelling of two-phase flow with second-order accurate scheme. J. Comput. Phys. 136 (1997) 503521. CrossRef
Toumi, I., A weak formulation of Roe's approximate Riemann solver. J. Comput. Phys. 102 (1992) 360373. CrossRef
Toumi, I., An upwind numerical method for two-fluid two-phase flow models. Nucl. Sci. Eng. 123 (1996) 147168. CrossRef
Tran, Q.H., Baudin, M. and Coquel, F., A relaxation method via the Born-Infeld system. Math. Mod. Methods Appl. Sci. 19 (2009) 12031240. CrossRef
Trapp, J.A. and Riemke, R.A., A nearly-implicit hydrodynamic numerical scheme for two-phase flows. J. Comput. Phys. 66 (1986) 6282. CrossRef
van Leer, B., Towards the ultimate conservative difference scheme II. Monotonicity and conservation combined in a second-order scheme. J. Comput. Phys. 14 (1974) 361370. CrossRef
van Leer, B., Towards the ultimate conservative difference scheme IV. A new approach to numerical convection. J. Comput. Phys. 23 (1977) 276299. CrossRef
WAHA3 Code Manual, JSI Report IJS-DP-8841. Jožef Stefan Institute, Ljubljana, Slovenia (2004).
Zein, A., Hantke, M. and Warnecke, G., Modeling phase transition for compressible two-phase flows applied to metastable liquids. J. Comput. Phys. 229 (2010) 29642998. CrossRef
Zuber, N. and Findlay, J.A., Average volumetric concentration in two-phase flow systems. J. Heat Transfer 87 (1965) 453468. CrossRef