Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-28T06:46:52.916Z Has data issue: false hasContentIssue false

Propagation of Gevrey regularity over long times for the fully discrete Lie Trotter splitting schemeapplied to the linear Schrödinger equation

Published online by Cambridge University Press:  08 July 2009

François Castella
Affiliation:
RMAR & INRIA Rennes, Équipe IPSO, Campus de Beaulieu, Université de Rennes 1, 35042 Rennes Cedex, France. francois.castella@univ-rennes1.fr
Guillaume Dujardin
Affiliation:
INRIA Rennes, Équipe IPSO, Antenne de Bretagne de l'École Normale Supérieure de Cachan, Avenue Robert Schumann, 35170 Bruz, France. Guillaume.Dujardin@ens-cachan.org
Get access

Abstract

In this paper, we studythe linear Schrödinger equation over the d-dimensional torus,with small values of the perturbing potential.We consider numerical approximations of the associated solutions obtainedby a symplectic splitting method (to discretize the time variable) in combination with the Fast Fourier Transform algorithm (to discretize the space variable).In this fully discrete setting, we prove that the regularity of the initialdatum is preserved over long times, i.e. times that are exponentially longwith the time discretization parameter. We here refer to Gevrey regularity, and our estimatesturn out to be uniform in the space discretization parameter.This paper extends [G. Dujardin and E. Faou, Numer. Math.97 (2004) 493–535], where a similar result has been obtained inthe semi-discrete situation, i.e. when the mere time variable is discretized and spaceis kept a continuous variable.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bambusi, D. and Grebert, B., Birkhoff normal form for PDEs with tame modulus. Duke Math. J. 135 (2006) 507567. CrossRef
Besse, C., Bidégaray, B. and Descombes, S., Order estimates in time of splitting methods for the nonlinear Schrödinger equation. SIAM J. Numer. Anal. 40 (2002) 2640. CrossRef
Cano, B., Conserved quantities of some Hamiltonian wave equations after full discretization. Numer. Math. 103 (2006) 197223. CrossRef
Cohen, D., Hairer, E. and Lubich, C., Long-time analysis of nonlinearly perturbed wave equations via modulated Fourier expansions. Arch. Ration. Mech. Anal. 187 (2008) 341368. CrossRef
G. Dujardin, Analyse de méthodes d'intégration en temps des équation de Schrödinger. Ph.D. Thesis, University Rennes 1, France (2008).
Dujardin, G. and Faou, E., Normal form and long time analysis of splitting schemes for the linear Schrödinger equation with small potential. Numer. Math. 108 (2007) 223262. CrossRef
Dujardin, G. and Faou, E., Long time behavior of splitting methods applied to the linear Schrödinger equation. C. R. Math. Acad. Sci. Paris 344 (2007) 8992. CrossRef
H.L. Eliasson and S.B. Kuksin, KAM for non-linear Schrödinger equation. Preprint (2006).
E. Hairer, S.P. Nørsett and G. Wanner, Solving Ordinary Differential Equations I. Nonstiff Problems, Springer Series in Computational Mathematics 8. Second Edition, Springer, Berlin (1993).
E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration – Structure-preserving Algorithms for Ordinary Differential Equations. Springer, Berlin (2002).
Jahnke, T. and Lubich, C., Error bounds for exponential operator splittings. BIT 40 (2000) 735744. CrossRef
B. Leimkuhler and S. Reich, Simulating Hamiltonian dynamics, Cambridge Monographs on Applied and Computational Mathematics 14. Cambridge University Press, Cambridge (2004).
Lubich, C., On splitting methods for the Schödinger-Poisson and cubic nonlinear Schrödinger equations. Math. Comp. 77 (2008) 21412153. CrossRef
Oliver, M., West, M. and Wulff, C., Approximate momentum conservation for spatial semidiscretizations of semilinear wave equations. Numer. Math. 97 (2004) 493535. CrossRef
Shang, Z., Resonant and Diophantine step sizes in computing invariant tori of Hamiltonian systems. Nonlinearity 13 (2000) 299308. CrossRef