Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-13T04:46:14.215Z Has data issue: false hasContentIssue false

Reduced resistive MHD in Tokamaks with general density

Published online by Cambridge University Press:  13 February 2012

Bruno Després
Affiliation:
Laboratoire Jacques-Louis Lions, Université Paris VI, 4 place Jussieu, 75015 Paris, France. despres@ann.jussieu.fr
Rémy Sart
Affiliation:
École Supérieure d’Ingénieurs Léonard de Vinci, 92916 Paris-La Défense, France; remy.sart@devinci.fr
Get access

Abstract

The aim of this paper is to derive a general model for reduced viscous and resistive Magnetohydrodynamics (MHD) and to study its mathematical structure. The model is established for arbitrary density profiles in the poloidal section of the toroidal geometry of Tokamaks. The existence of global weak solutions, on the one hand, and the stability of the fundamental mode around initial data, on the other hand, are investigated.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

G. Allaire, Numerical Analysis and Optimization : An Introduction to Mathematical Modelling and Numerical Simulation in Numerical Mathematics and Scientific Computation series. Oxford University Press (2007).
D. Biskamp, Nonlinear Magnetohydrodynamics. Cambridge University Press (1992).
J. Blum, Numerical simulation and optimal control in plasma physics, with application to Tokamaks. Series in Modern Applied Mathematics. Wiley/Gauthier-Villard (1989).
J. Blum, Numerical identification of the plasma current density in a Tokamak fusion reactor : the determination of a non-linear source in an elliptic pde, invited conference, in Proceedings of PICOF02. Carthage, Tunisie (2002).
Blum, J., Gallouet, T. and Simon, J., Existence and control of plasma equilibirum in a Tokamak. SIAM J. Math. Anal. 17 (1986) 11581177. Google Scholar
J. Blum, C. Boulbe and B. Faugeras, Real time reconstruction of plasma equilibrium in a Tokamak, International conference on burning plasma diagnostics. Villa Manoastero, Varenna (2007).
Brezis, H. and Berestycki, H., On a free boundary problem arising in plasma physics. Nonlinear Anal. 4 (1980) 415436. Google Scholar
Briguglio, S., Wad, G., Zonca, F. and Kar, C., Hybrid magnetohydrodynamic-gyrokinetic simulation of toroidal Alfven modes. Phys. Plasmas 2 (1995) 37113723. Google Scholar
Briguglio, S., Zonca, F. and Kar, C., Hybrid magnetohydrodynamic-particle simulation of linear and nonlinear evolution of Alfven modes in tokamaks. Phys. Plasmas 5 (1998) 32873301. Google Scholar
L.A. Caffarelli and S. Salsa, A geometric approach to free boundary problems, Graduate Studies in Mathematics. AMS, Providence, RI 68 (2005).
F. Chen, Introduction to plasma physics and controlled fusion. Springer, New York (1984).
Czarny, O. and Huysmans, G., MHD stability in X-point geometry : simulation of ELMs. Nucl. Fusion 47 (2007) 659666. Google Scholar
Czarny, O. and Huysmans, G., Bézier surfaces and finite elements for MHD simulations. J. Comput. Phys. 227 (2008) 74237445. Google Scholar
Deriaz, E., Després, B., Faccanoni, G., Gostaf, K.P., Imbert-Gérard, L.-M., Sadaka, G. and Sart, R., Magnetic equations with FreeFem++, The Grad-Shafranov equation and the Current Hole. ESAIM Proc. 32 (2011) 7694. Google Scholar
J.I. Diaz and J.F. Padial, On a free-boundary problem modeling the action of a limiter on a plasma. Discrete Contin. Dyn. Syst. Suppl. (2007) 313–322.
Diaz, J.I. and Rakotoson, J.-M., On a two-dimensional stationary free boundary problem arising in the confinement of a plasma in a Stellarator. C. R. Acad. Sci. Paris, Sér. I 317 (1993) 353359. Google Scholar
E. Feireisl, Dynamics of viscous compressible fluids. Oxford University Press (2004).
J. Freidberg, Plasma physics and fusion energy. Cambridge (2007).
A. Friedman, Variational principles and free-boundary problems. Wiley-interscience publication, Wiley, New York (1982).
T. Fujita, Tokamak equilibria with nearly zero central current : the current hole (review article). Nucl. Fusion 50 (2010).
Fujita, T., Oikawa, T., Suzuki, T., Ide, S., Sakamoto, Y., Koide, Y., Hatae, T., Naito, O., Isayama, A., Hayashi, N. and Shirai, H., Plasma equilibrium and confinement in a Tokamak with nearly zero central current density in JT-60U. Phys. Rev. Lett. 87 (2001) 245001245005. Google Scholar
J.F. Gerbeau, C. Le Bris and T. Lelièvre, Mathematical methods for the magnetohydrodynamics of liquid metals. Oxford University Press, USA (2006).
Huysmans, G., Hender, T.C., Hawkes, N.C. and Litaudon, X., MHD stability of advanced Tokamak scenarios with reversed central current : an explanation of the “Current Hole”. Phys. Rev. Lett. 87 (2001) 245002245006. Google Scholar
Huysmans, G.T.A., Pamela, S., van der Plas, E. and Ramet, P., Non-linear MHD simulations of edge localized modes (ELMs). Plasma Phys. Control. Fusion 51 (2009) 124012. Google Scholar
Kadomtsev, B.B. and Pogutse, O.P., Non linear helical perturbations of a plasma in a Tokamak. Sov. Phys.-JETP 38 (1974) 283290. Google Scholar
Kruger, S.-E., Hegna, C.C. and Callen, J.D., Generalized reduced magnetohydrodynamic equations. Phys. Plasmas 5 (1998) 41694183. Google Scholar
J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Études Mathématiques. Dunod (1969).
P.-L. Lions, Mathematical topics in fluid mechanics. Incompressible models, edited by Oxford Science Publication 1 (1996).
P.-L. Lions, Mathematical topics in fluid mechanics. Compressible models, edited by Oxford Science Publication 2 (1998).
Lütjens, H. and Luciani, J.-F., The XTOR code for nonlinear 3D simulations of MHD instabilities in tokamak plasmas. J. Comput. Phys. 227 (2008) 69446966. Google Scholar
Lütjens, H. and Luciani, J.-F., XTOR-2F : A fully implicit NewtonKrylov solver applied to nonlinear 3D extended MHD in tokamaks. J. Comput. Phys. 229 (2010) 81308143. Google Scholar
K. Miyamoto, Plasma physics and controlled nuclear fusion. Springer (2005).
B. Nkonga, Private communication (2010).
Rosenbluth, M.N., Monticello, D.A., Strauss, H.R. and White, R.B., Dynamics of high β plasmas. Phys. Fluids 19 (1976) 1987. Google Scholar
Smaltz, R., Reduced, three-dimensional, nonlinear equations for high-β plasmas including toroidal effects. Phys. Lett. A 82 (1981) 1417. Google Scholar
Strauss, H.R., Nonlinear three-dimensional magnetohydrodynamics of noncircular Tokamaks. Phys. Fluids 19 (1976) 134140. Google Scholar
Strauss, H.R., Dynamics of high β plasmas. Phys. Fluids 20 (1977) 13541360. Google Scholar
Temam, R., Remarks on a free boundary value problem arising in plasma physics. Commun. Partial Differ. Equ. 2 (1977) 563585. Google Scholar
R. Temam, Navier-Stokes Equations, Theory and Numerical Analysis. North-Holland (1979).
Yoshida, Z., Mahajan, S.M., Ohsaki, S., Iqbal, M. and Shatashvili, N., Beltrami fields in plasmas : High-confinement mode boundary layers and high beta equilibria. Phys. Plasmas 8 (2001) 2125. Google Scholar
Z. Yoshida et al., Potential Control and Flow Generation in a Toroidal Internal-Coil System – a New Approach to High-beta Equilibrium, in 20th IAEA Fusion Energy Conference. Online at http://www-naweb.iaea.org/napc/physics/fec/fec2004/papers/icp6-16.pdf (2004).