Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T10:11:09.825Z Has data issue: false hasContentIssue false

Regularization of nonlinear ill-posed problemsby exponentialintegrators

Published online by Cambridge University Press:  08 July 2009

Marlis Hochbruck
Affiliation:
Mathematisches Institut, Heinrich-Heine Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany. marlis@am.uni-duesseldorf.de; hoenig@am.uni-duesseldorf.de
Michael Hönig
Affiliation:
Mathematisches Institut, Heinrich-Heine Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany. marlis@am.uni-duesseldorf.de; hoenig@am.uni-duesseldorf.de
Alexander Ostermann
Affiliation:
Institut für Mathematik, Universität Innsbruck, Technikerstraße 13, 6020 Innsbruck, Austria. alexander.ostermann@uibk.ac.at
Get access

Abstract

The numerical solution of ill-posed problems requires suitableregularization techniques. One possible option is to consider timeintegration methods to solve the Showalter differential equationnumerically. The stopping time of the numerical integrator correspondsto the regularization parameter. A number of well-knownregularization methods such as the Landweber iteration or theLevenberg-Marquardt method can be interpreted as variants of theEuler method for solving the Showalter differential equation. Motivated by an analysis of the regularization properties of theexact solution of this equation presented by [U. Tautenhahn, Inverse Problems10 (1994) 1405–1418], we consider a variant of the exponential Euler methodfor solving the Showalter ordinary differential equation. We discuss asuitable discrepancy principle for selecting the step sizes withinthe numerical method and we review the convergence properties of [U. Tautenhahn, Inverse Problems10 (1994) 1405–1418], and of our discrete version [M. Hochbruck et al., Technical Report (2008)].Finally, we present numerical experiments which show that thismethod can be efficiently implemented by using Krylov subspacemethods to approximate the product of a matrix function with avector.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Böckmann, C. and Pornsawad, P., Iterative Runge-Kutta-type methods for nonlinear ill-posed problems. Inverse Problems 24 (2008) 025002. CrossRef
J. Daniel, W.B. Gragg, L. Kaufman and G.W. Stewart, Reorthogonalization and stable algorithms for updating the Gram-Schmidt QR factorization. Math. Comp. 30 (1976) 772–795.
Druskin, V.L. and Knizhnerman, L.A., Krylov subspace approximations of eigenpairs and matrix functions in exact and computer arithmetic. Numer. Lin. Alg. Appl. 2 (1995) 205217. CrossRef
Engl, H.W., Kunisch, K. and Neubauer, A., Convergence rates for Tikhonov regularization of nonlinear ill-posed problems. Inverse Problems 5 (1989) 523540. CrossRef
B. Hackl, Geometry Variations, Level Set and Phase-field Methods for Perimeter Regularized Geometric Inverse Problems. Ph.D. Thesis, Johannes Keppler Universität Linz, Austria (2006).
Hanke, M., A regularizing Levenberg-Marquardt scheme, with applications to inverse groundwater filtration problems. Inverse Problems 13 (1997) 7995. CrossRef
Hanke, M., Neubauer, A. and Scherzer, O., A convergence analysis of the Landweber iteration for nonlinear ill-posed problems. Numer. Math. 72 (1995) 2137. CrossRef
Hochbruck, M. and Lubich, C., Krylov, On subspace approximations to the matrix exponential operator. SIAM J. Numer. Anal. 34 (1997) 19111925. CrossRef
Hochbruck, M. and Ostermann, A., Explicit exponential Runge-Kutta methods for semilinear parabolic problems. SIAM J. Numer. Anal. 43 (2005) 10691090. CrossRef
Hochbruck, M., Hönig, M. and Ostermann, A., A convergence analysis of the exponential Euler iteration for nonlinear ill-posed problems. Inv. Prob. 25 (2009) 075009. CrossRef
Hochbruck, M., Ostermann, A. and Schweitzer, J., Exponential Rosenbrock-type methods. SIAM J. Numer. Anal. 47 (2009) 786803. CrossRef
Hohage, T. and Langer, S., Convergence analysis of an inexact iteratively regularized Gauss-Newton method under general source conditions. Journal of Inverse and Ill-Posed Problems 15 (2007) 1935.
M. Hönig, Asymptotische Regularisierung schlecht gestellter Probleme mittels steifer Integratoren. Diplomarbeit, Universität Karlsruhe, Germany (2004).
B. Kaltenbacher, A. Neubauer and O. Scherzer, Iterative Regularization Methods for Nonlinear Ill-Posed Problems. De Gruyter, Berlin, New York (2008).
Neubauer, A., Tikhonov regularization for non-linear ill-posed problems: optimal convergence rates and finite-dimensional approximation. Inverse Problems 5 (1989) 541557. CrossRef
Rieder, A., On the regularization of nonlinear ill-posed problems via inexact Newton iterations. Inverse Problems 15 (1999) 309327. CrossRef
Rieder, A., On convergence rates of inexact Newton regularizations. Numer. Math. 88 (2001) 347365. CrossRef
Rieder, A., Inexact Newton regularization using conjugate gradients as inner iteration. SIAM J. Numer. Anal. 43 (2005) 604622. CrossRef
Rieder, A., Runge-Kutta integrators yield optimal regularization schemes. Inverse Problems 21 (2005) 453471. CrossRef
Seidman, T.I. and Vogel, C.R., Well-posedness and convergence of some regularization methods for nonlinear ill-posed problems. Inverse Problems 5 (1989) 227238. CrossRef
Showalter, D., Representation and computation of the pseudoinverse. Proc. Amer. Math. Soc. 18 (1967) 584586. CrossRef
Tautenhahn, U., On the asymptotical regularization of nonlinear ill-posed problems. Inverse Problems 10 (1994) 14051418. CrossRef
van den Eshof, J. and Hochbruck, M., Preconditioning Lanczos approximations to the matrix exponential. SIAM J. Sci. Comp. 27 (2006) 14381457. CrossRef